Local and global artificial potential functions in the control of mobile robots
Abstract
The article presents overview of authors' results concerning mobile robot con- trol algorithms that use local arti cial potential functions (APF) to avoid colli- sions and global arti cial potential functions, named also navigation functions (NF) used to both collision avoidance and driving robot to a desired goal. All included algorithms assume that the mobile platform is di erentially driven mobile robot with nonholonomic constraints. E ectiveness of presented meth- ods is illustrated by simulation and experimental results. Experimental setup used to demonstrate control algorithms is presented.The article presents overview of authors' results concerning mobile robot con-trol algorithms that use local articial potential functions (APF) to avoid colli-sions and global articial potential functions, named also navigation functions(NF) used to both collision avoidance and driving robot to a desired goal. Allincluded algorithms assume that the mobile platform is dierentially drivenmobile robot with nonholonomic constraints. Eectiveness of presented meth-ods is illustrated by simulation and experimental results. Experimental setupused to demonstrate control algorithms is presented.