• ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo Depositar?
  • Estadísticas
Repositorio Institucional
de la Universidad Tecnológica de Panamá
    • English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   UTP-Ridda2
  • Tesis
  • Tesis de Doctorado
  • Ingeniería en computación e informática
  • Facultad de Ingeniería de Sistemas Computacionales
  • View Item
  •   UTP-Ridda2
  • Tesis
  • Tesis de Doctorado
  • Ingeniería en computación e informática
  • Facultad de Ingeniería de Sistemas Computacionales
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scene Understanding for Mobile Robots Exploiting Deep Learning Techinques

Thumbnail
View/Open
tesis_jose_carlos_rangel_ortiz.pdf (5.972Mb)
Date
2017-09-05
Author
Rangel, José Carlos
Director
Cazorla, Miguel
Martínez-Gómez, Jesús
Metadata
Show full item record
Abstract
Every day robots are becoming more common in the society. Consequently, they must have certain basic skills in order to interact with humans and the environment. One of these skills is the capacity to understand the places where they are able to move. Computer vision is one of the ways commonly used for achieving this purpose. Current technologies in this field offer outstanding solutions applied to improve data quality every day, therefore producing more accurate results in the analysis of an environment. With this in mind, the main goal of this research is to develop and validate an efficient object-based scene understanding method that will be able to help solve problems related to scene identification for mobile robotics. We seek to analyze state-of-the-art methods for finding the most suitable one for our goals, as well as to select the kind of data most convenient for dealing with this issue. Another primary goal of the research is to determine the most suitable data input for analyzing scenes in order to find an accurate representation for the scenes by meaning of semantic labels or point cloud features descriptors. As a secondary goal we will show the benefits of using semantic descriptors generated with pre-trained models for mapping and scene classification problems, as well as the use of deep learning models in conjunction with 3D features description procedures to build a 3D object classification model that is directly related with the representation goal of this work. The research described in this thesis was motivated by the need for a robust system capable of understanding the locations where a robot usually interacts. In the same way, the advent of better computational resources has allowed to implement some already defined techniques that demand high computational capacity and that offer a possible solution for dealing with scene understanding issues. One of these techniques are Convolutional Neural Networks (CNNs). These networks have the capacity of classifying an image based on their visual appearance.
URL
http://rua.ua.es/dspace/handle/10045/72503
URI
http://ridda2.utp.ac.pa/handle/123456789/6473
Collections
  • Facultad de Ingeniería de Sistemas Computacionales [5]
License
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
Degree Grantor
Doctor en Informática
University
Universidad de Alicante, España

Browse

All of UTP-Ridda2Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá