• ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo Depositar?
  • Estadísticas
Repositorio Institucional
de la Universidad Tecnológica de Panamá
    • English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   UTP-Ridda2
  • Investigación
  • Ingeniería Eléctrica
  • Facultad de Ingeniería Eléctrica
  • View Item
  •   UTP-Ridda2
  • Investigación
  • Ingeniería Eléctrica
  • Facultad de Ingeniería Eléctrica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatio-temporal probabilistic modeling based on Gaussian mixture models and neural gas theory for prediction of criminal activity

Thumbnail
View/Open
spatio-temporal-probabilistic-modeling.pdf (890.5Kb)
Date
2017-08-18
2017-08-18
Author
Jaramillo, Francisco
L. Quintero, Vanessa
Perez, Aramis
Orchard, Marcos
Metadata
Show full item record
Abstract
Criminal risk models are used to assist security forces both in the identification of zones with high of criminal activity for better resource allocation and prediction of future criminal events for the prevention of new crimes. In this sense, spatio-temporal models are widely employed by their capacity of characterizing the criminal risk inside of a zone of interest and updating the model to new crime data. This paper improves an existing method based on spatio-temporal probabilistic risk functions. The spatial probabilistic characterization uses geo-referenced information of criminal incidents related to public services to approximate a risk function based on a Gaussian Mixture Model (GMM). The temporal characterization is supported by Importance Sampling methods and Neural Gas theory to incorporate the information from new measurements, in a recursive manner, updating the spatial probabilistic risk function. Finally, we propose a prediction scheme for criminal activity that also uses Neural Gas Theory, in conjunction with hypothetical future criminal events sampled from a GMM that characterizes the spatial distribution associated with recent criminal activity. The time index related to each hypothetical future crime event is probabilistically characterized using an exponential distribution. Results using real data and the defined performance indexes show an improvement both in the temporal updating as well as the proposed prediction approach.
URI
http://ridda2.utp.ac.pa/handle/123456789/6153
Collections
  • Facultad de Ingeniería Eléctrica [111]
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
info:eu-repo/semantics/openAccess

Browse

All of UTP-Ridda2Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá

  • Enlaces de Interes

  • ¿Qué es UTP-Ridda2?
  • Políticas
  • ¿Cómo depositar?
  • Sitios Recomendados

  • Revistas UTP
  • Sistema de Información Científica
  • Universidad Tecnológica de Panamá
  • Redes Sociales

  • facebook.com/UTPrepositorio
  • @utprepositorio

Recolectado por:

El OAI de este repositorio: http://ridda2.utp.ac.pa/oai/
Repositorio Institucional de Documentos Digitales de Acceso Abierto de la Universidad de Tecnológica de Panamá.
Este repositorio utiliza la Licencia CC BY-NC-SA y funciona bajo DSpace.

Contact Us | Send Feedback
Universidad Tecnológica de Panamá