Mostrar el registro sencillo del ítem

dc.contributoren-US
dc.creatorRodríguez, Humberto
dc.creatorGrimaldo, Gabriel
dc.creatorManzano, Andrés
dc.creatorRodríguez, Humberto
dc.creatorGrimaldo, Gabriel
dc.creatorManzano, Andrés
dc.date2018-02-11
dc.date.accessioned2018-02-23T17:16:21Z
dc.date.available2018-02-23T17:16:21Z
dc.identifierhttps://knepublishing.com/index.php/KnE-Engineering/article/view/1515
dc.identifier10.18502/keg.v3i1.1515
dc.identifier.urihttp://ridda2.utp.ac.pa/handle/123456789/4306
dc.descriptionThe smart devices used for health and physical activities monitoring are elements with high presence in the market of wearables.     This work presents an estimaton method for walking speed based on a multilayer artificial neural netwok, which has been trained to obtain the ratio between this speed and the frequency of the arms motion, characteristics of each person.    In spite of using only 3 input variables (hight weight and gender), errors than less than 10% were obtained for the mentioned ratio. In addition,  the estimation algorith has been incorporated into a low cost, wrist weareable device, ehich uses a inertial measurement unit (IMU) to measure the angular velocity of one arm.  These IMUs are not common for these type of devices, but can be used to obtain more accurate speed measures than those obtained by meas of GPS units.  Thus,  the system can be used to record the physical activity with higher accuracy.Keywords: Artificial neural network, walking speed measurement, health monitoring, IMU, GPS.en-US
dc.formatapplication/msword
dc.formatapplication/pdf
dc.formatapplication/xml
dc.languageeng
dc.publisherKnE Publishingen-US
dc.relationhttps://knepublishing.com/index.php/KnE-Engineering/article/view/1515/3305
dc.relationhttps://knepublishing.com/index.php/KnE-Engineering/article/view/1515/3595
dc.relationhttps://knepublishing.com/index.php/KnE-Engineering/article/view/1515/3596
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source2518-6841
dc.sourceKnE Engineering; 6th Engineering, Science and Technology Conference - Panama 2017 (ESTEC 2017); 953-962en-US
dc.titleMonitoreo de la Actividad Física a Partir de un Modelo Basado en Redes Neuronales, con Dispositivo "Wearable"en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem