Mostrar el registro sencillo del ítem

Mejorando la predicción del síndrome de Down mediante un modelo de clasificación de datos médicos inteligente- Caso de Estudio

dc.contributoren-US
dc.contributores-ES
dc.creatorSaldana-Barrios, Juan Jose
dc.creatorConcepción, Tomas
dc.creatorVargas-Lombardo, Miguel
dc.date2016-12-13
dc.date.accessioned2017-07-28T13:57:07Z
dc.date.available2017-07-28T13:57:07Z
dc.identifierhttp://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1234
dc.identifier.urihttp://ridda2.utp.ac.pa/handle/123456789/1814
dc.descriptionIn health areas like drugs application, surgeries, projection of the spreading of contagious diseases, study of cancer and others, estimation, accuracy and precision are crucial. In the last few years, machine-learning methods have been used to obtain the best precision in prediction and classification of sensitive data for the medical community. Currently the Down’s syndrome risk estimation process uses established inferior and superior limits to determine if a chemical test is normal or abnormal. Using machine-learning methods we can calculate these limits dynamically. It would adapt the process to the parameters of the population improving it´s results. In this paper we first propose a model to dynamically calculate the values of the upper and lower limits of a healthy population, second the model is implemented and the process is explained and third we compare the results of applying Support Vector Machine and Naive Bayes machine learning methods to predict the risk of having Downs syndrome.en-US
dc.descriptionEn el área de la salud la aplicación de medicamentos, realización de cirugías, proyecciones sobre la dispersión de enfermedades infecciosas, estudios del cáncer y otras, características como la precisión y la exactitud son fundamentales. En los últimos años, los métodos de inteligencia artificial conocidos como métodos de aprendizaje de máquinas son cada vez más usados para lograr obtener la mayor precisión y certeza en la predicción y clasificación de datos sensibles para la comunidad médica. Actualmente el método de predicción utilizado para estimar la probabilidad de poseer la Aneuploidía conocida como síndrome de Down utiliza límites inferiores y superiores para indicar si los múltiplos de las medianas conocida como MoMs, son calculados mediante pruebas químicas y se encuentran dentro del rango de una población saludable o anormal. Utilizando estos métodos de aprendizaje de máquinas podemos calcular estos límites dinámicamente. El algoritmo determina los parámetros ajustándose a lo indicado por la misma población mejorando así precisión de la estimación. En este trabajo primero se propone un modelo para calcular dinámicamente los valores superiores e inferiores que actúan como límite para pronosticar si un paciente presenta o no esta alteración cromosómica. Segundo, el modelo es explicado e implementado y tercero, los resultados obtenidos mediante el método de máquinas de vectores de soporte y clasificadores bayesianos ingenuos son comparados para determinar cuál de los dos proporciona mejores resultados al momento de predecir el riesgo de padecer esta aneuploidía.es-ES
dc.formatapplication/pdf
dc.formattext/html
dc.languagespa
dc.publisherUniversidad Tecnológica de Panamáes-ES
dc.relationhttp://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1234/1267
dc.relationhttp://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/1234/html_2
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source2219-6714
dc.source1680-8894
dc.sourceI+D Tecnológico; Vol. 12, Núm. 2 (2016): Revista I+D Tecnológico; 36-45es-ES
dc.subjectNaïve Bayes, Machine Learning, Support Vector Machine, Down’s syndrome, eHealthen-US
dc.subjectClasificador Bayesiano Ingenuo, Máquina de Aprendizaje Automático, Máquina de Vectores de Soporte, Síndrome de Down, Salud Electrónica.es-ES
dc.titleImproving Downs Syndrome Prediction with a Smart Medical Data Classification Model- Case of Studyen-US
dc.titleMejorando la predicción del síndrome de Down mediante un modelo de clasificación de datos médicos inteligente- Caso de Estudioes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Vol. 12, Núm. 2 (2016): Revista I+D Tecnológico [13]
    La Universidad Tecnológica de Panamá se complace en presentar a la comunidad científica en general la primera edición del año 2016 de la Revista I+D Tecnológico, correspondiente al volumen 12, número 2.

Mostrar el registro sencillo del ítem