Assessment of the Sensor-fusion Technique for Occupancy Detection in a University Office
Evaluación de la técnica de fusión de sensores para la detección de ocupación en una oficina universitaria
Abstract
Since the success of developing more energy efficient buildings has a surgical dependence on the occupants' behavior and systems usage, the necessity of accounting for their correct behavior in the simulation of the early-stage buildings' design and energy consumption evaluation, is increasing rapidly. To board this necessity, a technique called sensor-fusion is being widely implemented in the building domain, to first develop accurate descriptive models for occupancy profiles, and ultimately, to be able to predict typical profiles. In this context, an office is instrumented to monitor the indoor air quality, the power consumption, and the use of the window, and air conditioning unit. The real occupancy state was monitored manually. The data analysis allowed to highlight the most relevant parameters associated with the occupancy state, based on the Spearman's correlation coefficient. The use of histograms allowed to identify an optimal sensor combination for detecting the occupancy state of the office room. The identified optimal combination groups the CO2, power, and window state sensors, which detected the occupancy with 91.5% of accuracy. Dado que el éxito de desarrollar edificios con mayor eficiencia energética tiene una dependencia quirúrgica del comportamiento de los ocupantes y el uso de los sistemas, la necesidad de tener en cuenta su comportamiento correcto en la simulación del diseño de los edificios en etapa inicial y la evaluación del consumo de energía, aumenta rápidamente. Para abordar esta necesidad, se está implementando ampliamente una técnica llamada fusión de sensores en el dominio del edificio, para desarrollar primero modelos descriptivos precisos para los perfiles de ocupación y, en última instancia, para poder predecir los perfiles típicos. En este contexto, una oficina está instrumentada para monitorear la calidad del aire interior, el consumo de energía y el uso de la ventana y la unidad de aire acondicionado. El estado de ocupación real fue monitoreado manualmente. El análisis de datos permitió resaltar los parámetros más relevantes asociados con el estado de ocupación, basado en el coeficiente de correlación de Spearman. El uso de histogramas permitió identificar una combinación óptima de sensores para detectar el estado de ocupación de la sala de oficina. La combinación óptima identificada agrupa los sensores de CO2, energía y estado de la ventana, que detectaron la ocupación con un 91.5% de precisión.