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ABSTRACT 

This research proposes a method for energy management in 

electric bicycles with Lithium-Ion batteries. This method 

optimizes the way energy is consumed to maximize the 

rider’s comfort, subject to constraints on the battery State-of-

Charge once destination is reached. The algorithm considers 

the elevation profile of the route chosen by the rider, 

predicting the battery energy consumption based on physical 

parameters of the user and the bicycle. The route is 

partitioned into equispaced segments, and the optimization 

problem is then formulated to decide when to pedal or when 

to use the bicycle electric motor. Binary Particle Swarm 

Optimization (BPSO) is used to solve the optimization 

problem, while particle-filter-based estimators are used to 

determine the initial battery State-of-Charge. We surmise that 

management of the variability associated with the State-of-

Charge swing range, in a systematic manner, will help to 

increase the battery life. 

1. INTRODUCTION 

The use of new technologies or the optimization of the 

existing ones for the transformation of the actual energetic 

matrix becomes of great importance throughout the world in 

order to reduce the dependence of fossil fuels, by generating 

electricity with a low carbon index, increasing the efficiency 

and reducing the greenhouse effect gas emissions. The 

International Energy Agency (IEA) establishes that carbon 

dioxide emissions can be reduced in a significant manner by 

year 2050, if the transportation industry is modified with the 

incorporation of new energy sources (Agency, 2012).  

In this regard, bicycles can play a crucial role since they are 

affordable, environmentally friendly, and in major urban 

areas perhaps the best choice to reach the destination due to 

traffic congestions (Corno, Berretta, Spagnol, and Savaresi, 

2016), increasing the use of bicycles inside the cities on 

recent years, changing the perception of this vehicle. An 

example of this situation is that some companies encourage 

employees with benefits if they ride a bicycle to work. 

However, this solution might not be suitable for people that 

are not used to physical exercise, or if the traveling distances 

or the topography are an issue. Therefore the use of motorized 

bicycles can be a solution for this problem, and in particular 

electric bicycles (e-bikes) since they offer zero emissions 

when used. 

This article proposes the development of an algorithm that 

considers the elevation profile of a route given by the user to 

determine on what segments of the route will the electric 

motor be turned on, optimizing the performance of the battery 

subject to the desired amount of energy that the user intends 

to have at the end of the route. This work did not consider 

vehicular traffic neither road signs. For this reason, energy 

recovery through the use of regenerative brakes is not part of 

the model. This article is organized as follow: Section 2 

provides information about the e-bike. Section 3 explains the 

methodology used, and Section 4 shows the results obtained 

using the proposed optimization algorithm. Finally, Section 

5 is used for the conclusions. 

2. ELECTRIC BICYCLE 

The basic principles of e-bikes establish that there should be 

a power flow controller that regulates the energy delivered 
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from the battery into the motor. The electrical power 

generated by the motor acts simultaneously with the 

mechanic power produced by the user when pedaling 

transforming both powers into motion. The basic scheme is 

shown in Figure 1. 

When riding an e-bike, the cyclist has three options 

(considering there is enough energy available): allow the 

motor to perform all the work, pedal at the same time the 

motor is working or, pedal without any motor assistance. 

Usually, e-bikes are powered by a brushless motor capable of 

reaching speeds between 20 and 25 km/h (Muetze & Tan, 

2005). The full torque given by the transmission is a 

combination of mechanical power (generated by the user 

while pedaling) and electric power (generated by the motor). 

Typically, the e-bikes allow the user to determine the 

required torque level needed as support, and then the motor 

delivers that amount of power until the motor runs out of 

energy or when the torque level is changed. This approach 

might not be the optimal to manage the stored energy on the 

Energy Storage Device (ESD). To manage the available 

energy, it is planned to use control algorithms and sensors to 

monitor the metabolic state of the cyclist with the intention to 

save energy on those periods where the user is more active, 

and using the energy when the user gets tired, taking into 

consideration that there should be energy stored at the end of 

the route (Corno et al., 2016). 

Managing the energy becomes relevant since depending on 

how the ESD is used, it influences the future performance of 

the battery and the way it delivers the energy to the motor, 

having a direct impact on the degradation process. The 

degradation process, reflected on the State-of-Health (SOH) 

of the ESD, is responsible for the way the energy is delivered 

and stored since the cycling capacity diminishes with the use.  

 

 

Figure 1. Basic scheme of an e-bike. 

3. METHODOLOGY 

Given an initial location and a destination for the route, the 

objective is to indicate in which zones the cyclist should 

pedal and assist the electric motor in order to reach the 

destination with the desired amount of energy remaining on 

the ESD. This way, there will be enough energy to return to 

the original location, or to continue somewhere else. 

3.1. Route Partition 

To define the sections where the motor will operate an 

optimization problem is presented. The motion of the e-bike 

can be characterized through the physics of the speed, and 

relating it to a function of the delivered power by the motor, 

hence creating an expression for the objective function. The 

optimization algorithm is considering the route as N finite 

segments determining in which segments the motor will be 

operating. In the following section the physical modelling 

along with the detailed parameters of the cyclist that define 

the kinematics and the dynamics of the whole system are 

explained.  

3.2. Power-Speed Model 

The physical model used to describe the kinematics of the 

cyclist considers resistive forces to the motion of the bicycle, 

relating the input power (delivered by the motor and the 

pedaling) to the actual output speed. The three main resistive 

forces are: gravity, friction and the aerodynamic drag.  

The force of gravity affects the system as a function of the 

slope that the user faces. It could either accelerate or reduce 

the speed depending if going upwards or downwards. 

Equation (1) explains these phenomena, combining the 

gravitational constant 𝑔 (9.8067 m/s2), the total mass of the 

user and the bicycle in kilograms (𝑊), and the inclination 

degree as a percentage where the user is (𝐺). 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦[𝑁] = 𝑔 ∙ cos(𝑎𝑟𝑐𝑡𝑎𝑛 𝐺 100⁄ ) ∙ 𝑊                                    (1) 

The friction resistance is the one that opposes the movement 

of the bicycle, and it is represented by a dimensionless 

parameter known as the rolling resistance coefficient (𝐶𝑟𝑟). 

It depends on the contact between the wheels and the road, 

the materials and the type if surface, as well as the weight of 

the system. It is described by Eq. (2). 

𝐹𝑤ℎ𝑒𝑒𝑙[𝑁] = 𝑔 ∙ cos(𝑎𝑟𝑐𝑡𝑎𝑛 𝐺 100⁄ ) ∙ 𝑊 ∙ 𝐶𝑟𝑟 (2) 

The aerodynamic drag is produced by the resistive force 

produced by the frontal air that pushes against the user and 

the bicycle. If the movement is faster the opposing air also 

increases. This type of force can be described as a 

dimnesionless coefficient (𝐶𝑑) that captures the effect ot the 

air that goes through the cyclist depending on the clothes, and 

the type of air flow (laminar or turbulent). Equation (3) 

describes this type of force, whereas A represents the frontal 

area of the cyclist and the bicycle in (𝑚2), 𝑅ℎ𝑜 represents 

the air density in (𝑘𝑔 𝑚3⁄ ), and 𝑣 is the speed at which the 

system is moving in (𝑚 𝑠⁄ ). 

𝐹𝑑𝑟𝑎𝑔[𝑁] = 0.5 ∙ 𝐶𝑑 ∙ 𝐴 ∙ 𝑅ℎ𝑜 ∙ 𝑣2 (3) 
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In this regard, the total force that acts on the system is given 

by Eq. (4). 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡[𝑁] = 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑤ℎ𝑒𝑒𝑙 + 𝐹𝑑𝑟𝑎𝑔  (4) 

Thus, for every unit of distance that it is advanced it is 

necesssary to spend a certain amount of energy to recover 

from the resistive forces. Then the required work to be able 

to advance a distance 𝐷(𝑚) is given by Eq. (5). 

𝑊[𝐽] = 𝐹𝑟𝑒𝑠𝑖𝑠𝑡 ∙ 𝐷 (5) 

Considering that to cover a certain distance within a 

determined time interval, it is necessary to travel at a certain 

speed 𝑣, it is possible to calculate the required power that 

needs to be injected to the wheels, as shown by Eq. (6). 

𝑃𝑤ℎ𝑒𝑒𝑙[𝑊] = 𝐹𝑟𝑒𝑠𝑖𝑠𝑡 ∙ 𝑣 (6) 

The injected power consists of the combination of the 

generated power by the motor and the cyclist. However, there 

are some minor losses due to the mechanical components of 

the bicycle: chain, gears, etc. These losses are going to be 

estimated at 3% assuming that the bicycle is in good 

condition. This percentage is represented as 𝐿𝑜𝑠𝑠𝑑𝑡 . This 

way, the real power produced by the cyclist and motor can be 

related to the power of the spin of the wheel according to Eq. 

(7). 

𝑃𝑤ℎ𝑒𝑒𝑙[𝑊] = (1 − (𝐿𝑜𝑠𝑠𝑑𝑡 100⁄ )) ∙ 𝑃𝑚𝑜𝑡𝑜𝑟+𝑐𝑦𝑐𝑙𝑖𝑠𝑡 (7) 

Finally, we can obtain the equation that relates the traveling 

speed with the injected power. This can be done with the prior 

equations and resulting into the new Eq. (8). 

𝑃𝑚𝑜𝑡𝑜𝑟+𝑐𝑦𝑐𝑙𝑖𝑠𝑡[𝑊] = (1 − (𝐿𝑜𝑠𝑠𝑑𝑡 100⁄ ))
−1

 

∙ (𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑤ℎ𝑒𝑒𝑙 + 𝐹𝑑𝑟𝑎𝑔) ∙ 𝑣 

(8) 

𝐹𝑑𝑟𝑎𝑔  contains the term 𝑣2 making Eq. (8) a third-degree 

equation. Hence, Eq. (8) is solved as a function of each of the 

slopes defined in each segment, giving as result the array 𝑣. 

Then, it is possible to calculate the approximate time that the 

vehicle requires to circulate through the 𝑛𝑡ℎ segment through 

Eq. (9), where 𝑑𝑛  is the distance of the 𝑛𝑡ℎ  step. We are 

going to consider 𝑑𝑛 as a constant value given by the user and 

equal to the length of the segments. 

∆𝑇 =
∆𝑑𝑛

𝑣𝑛

 
(9) 

3.3. Coefficients Estimation 

The coefficients 𝐶𝑟𝑟  and 𝐶𝑑  are empirically calculated 

through the following experiment: the e-bike is ridden on a 

terrain with practically no elevation (𝐺 = 0) and the data is 

obtained through a GPS and stored. The previous equations 

can be simplified as follows: 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡[𝑁] = 𝐹𝑤ℎ𝑒𝑒𝑙 ∙ 𝐹𝑑𝑟𝑎𝑔 (10) 

𝐹𝑤ℎ𝑒𝑒𝑙[𝑁] = 𝑔 ∙ 𝑊 ∙ 𝐶𝑟𝑟 (11) 

 

𝐹𝑑𝑟𝑎𝑔[𝑁] = 𝐶𝑑 ∙ 𝐴 ∙ 𝑅ℎ𝑜 ∙ 𝑣2 (12) 

Moments later, when a certain speed is reached, the pedaling 

is stopped until the bicycle finally stops. Using Eq. (10) and 

dividing by the total mass of the system (known value), it is 

possible to obtain an expression for the acceleration, as 

shown by Eq. (13). 

𝑎[𝑚 𝑠2⁄ ] = 𝑔 ∙ 𝐶𝑟𝑟 +
𝐶𝑑 ∙ 𝐴 ∙ 𝑅ℎ𝑜

𝑊
∙ 𝑣2 

 

(13) 

With the information obtained through GPS, and since the 

values of 𝑎  and 𝑣  are known, a linear regression is done 

between the two variables making it is possible to identify the 

position coefficient as the term given by 𝑔𝐶𝑟𝑟 and the slope 

of the regression as (𝐶𝑑𝐴𝑅ℎ𝑜) 𝑊⁄ . Since all the variables are 

known, it is possible to calculate 𝐶𝑑 afterwards.  

3.4. Optimization Algorithm 

The decision making process to determine in what segments 

of the route the motor will operate, is done with Binary 

Particle Swarm Optimization (BPSO), an evolutionary 

optimization algorithm. It is inspired on the behavior of 

collaborative organisms’ swarms and how they create 

trajectories. The swarm is represented by particles that use 

the obtained fitness information of all the particles to find the 

optimum value. This algorithm is based on the regular 

Particle Swarm Optimization (PSO) algorithm. PSO 

considers the potential solution to the optimization problem 

representing it by the 𝑖𝑡ℎ particle of spatial coordinates 𝑥𝑖,𝑗, 

that was obtained when searching in the function domain 

through a vector speed or change rate denoted by 𝑣𝑖,𝑗, where 

the subindex 𝑗  moves along the coordinated of the D-

dimensional space of the function domain. Each particle 

memorizes the value of its best fitness on the variable 𝑃𝑏𝑒𝑠𝑡,𝑖,𝑗 

at the same time in which the whole swarm knows the value 

for the best global fitness on the variable 𝑔𝑏𝑒𝑠𝑡,𝑖,𝑗 (Kennedy 

& Eberhart, 1997). The position of the particles is updated 

with the following equations, where 𝑡  represents the time 

instant:  

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝑣𝑖,𝑗(𝑡 + 1) 

 

(14) 

𝑣𝑖,𝑗(𝑡 + 1) = 𝜔 ∙ 𝑣𝑖,𝑗(𝑡) 

                        +𝑐1𝑅1 ∙ (𝑝𝑏𝑒𝑠𝑡,𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡)) 

                        +𝑐2𝑅2 ∙ (𝑝𝑏𝑒𝑠𝑡,𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡)) 

(15) 

The BPSO case is equivalent to the PSO algorithm but the 

components that move along the function domain take values 
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of 0 or 1. In this sense, it is necessary to redefine how the 

particles are updated, understanding the concept of velocity 

as the probability of the 𝑗𝑡ℎ component of the particle varies 

its actual value (Lee, Soak, Oh, Pedrycz, & Jeon, 2008), and 

this is solved as shown by Eq. (16): 

𝑥𝑖,𝑗(𝑡 + 1) = {
0, 𝑖𝑓 𝑟𝑎𝑛𝑑() ≥ 𝑆 (𝑣𝑖,𝑗(𝑡 + 1))

1,        𝑖𝑓 𝑟𝑎𝑛𝑑() < 𝑆 (𝑣𝑖,𝑗(𝑡 + 1)) 
 

(16) 

In this case, S(∙) corresponds to the sigmoid function 

explained by Eq. (17), and evaluated with the velocity 

obtained from Eq. (15), to limit the magnitude between 0 and 

1 and describing in this way the probability of change. The 

expression rand() is just a random number between 0 and 1. 

𝑆 (𝑣𝑖,𝑗(𝑡 + 1)) =
1

1 + 𝑒−𝑣𝑖,𝑗(𝑡+1)
 

 

(17) 

Furthermore, the application considers the BPSO particles in 

a manner that the binary components indicate if the user must 

pedal (value of 0) of not (value of 1). Note that the dimension 

of the particle corresponds with the N partitions done at the 

beginning, where the 𝑗𝑡ℎ  component of the particle 

corresponds to the 𝑗𝑡ℎ step of the trip. Then the function to be 

optimized is given by Eq. (18). 

𝑌 = ([(𝑆𝑂𝐶𝑠 − 𝑆𝑂𝐶𝑓
∗) ∙ 𝑄𝑛𝑜𝑚] − ∑ 𝑖𝑛∆𝑇𝑛𝑥𝑖,𝑛

𝑁

𝑛=1

)

2

 

 

(18) 

On Eq. (18), 𝑆𝑂𝐶𝑠 is the available state-of-charge (SOC) at 

the beginning if the trip, while 𝑆𝑂𝐶𝑓
∗ is the desired amount of 

charge when arriving at the destination point, and 𝑄𝑛𝑜𝑚 is the 

nominal capacity of the bicycle’s battery, measured in (𝐴ℎ). 

Thus, the first part of the Eq. (18) represents the energy that 

ideally is going to be employed for the trip. The summation 

represents the energy that is going to be used for a given 

pedaling profile, described by  𝑥𝑖,𝑛 . The estimated time in 

which the cyclist travels the 𝑛 − 𝑡ℎ  step of the trajectory 

partition is given by ∆𝑇𝑛 (calculated with Eq. (9)). Finally, 𝑖𝑛  

is the electric current consumed by the motor on that segment 

of the route. 

4. RESULTS 

The following results were obtained through the simulation 

of the route between Plaza de Maipu and Plaza Italia, in 

Santiago, Chile, as seen on Figure 2. Using Google Earth it is 

possible to obtain the elevation profiles for the route to 

follow.  

Figures 3 through 8 show the results for six different 

simulation scenarios for the same route using the proposed 

optimization algorithm. The black continuous line on these 

figures indicate the altitude above sea level of the route 

referenced to the starting point, obtained with Google Earth 

Elevation Profiles. The bars represent those segments in 

which the motor will be turned on, and the lack of bars 

indicate that the motor will be turned off. Since BPSO is a 

type of heuristic genetic algorithm the obtained solutions can 

be different. Furthermore, the solutions are considered to be 

reasonable within a certain range, in which the final SOC will 

not be less than the specified at the beginning of the 

simulation, since there are other environmental variables that 

escape from the focus of this model, such as: road signs, 

detours, or traffic, to mention a few. 

 

 

Figure 2: Route and Elevation Profile. 

 

Figure 3: Utilization scheme for case #1. 

Table 1 shows the results for different simulation scenarios, 

of the previous figures. The variable 𝑄𝑛𝑜𝑚 , represents the 

nominal capacity of the battery, 𝐶𝑖𝑑𝑒𝑎𝑙  is the theoretical 

capacity that should be consumed in the route, while 𝐶𝑠𝑜𝑙 is 
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the estimated consumed capacity if the algorithm is 

employed. The column distance is equal to the length of each 

partition or segment in which the total route was divided prior 

to the optimization. It is important to mention that the motor 

is on or off during complete segments.  

The size of the partition plays an important role since there is 

more precision on the solutions when the amount of segments 

is greater, however, this will translate into a higher 

computational cost. Also, it is important to remember that 

small segments can give solutions where the motor turns on 

and off over small distances creating a certain degree of 

discomfort for the user. 

 

Figure 4: Utilization scheme for case #2. 

 

 

Figure 5: Utilization scheme for case #3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Utilization scheme for case #4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Utilization scheme for case #5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Utilization scheme for case #6. 
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Table 1. Simulation Results Summary 

Case Distance 

[m] 
𝑆𝑂𝐶𝑠 
[%] 

𝑆𝑂𝐶𝑓
∗ 

[%] 

𝑄𝑛𝑜𝑚 
[𝐴ℎ] 

𝐶𝑖𝑑𝑒𝑎𝑙 
[𝐴ℎ] 

𝐶𝑠𝑜𝑙  
[𝐴ℎ] 

1 100 100 50 4 2 1.9906 

2 100 100 80 4 0.8 0.7843 

3 100 100 50 8 4 4.0122 

4 100 100 80 8 1.6 1.5644 

5 250 100 50 8 4 4.0302 

6 250 100 80 8 1.6 1.6711 

 

5. CONCLUSIONS 

This paper proposed a methodology to manage the use of the 

available energy of an e-bike. The routes are characterized 

with an elevation profile that will be used as an input to an 

optimization algorithm that will assist the user and determine 

in what parts of the trip the motor will be on and in which 

parts will be off. This way, the user will arrive to the 

destination using only the desired amount of energy, and 

keeping the rest stored in the battery.  

The optimization algorithm delivers different solutions for 

the same route, and it is possible to modify certain 

parameters, for example the distance of the segments in order 

to find a more convenient solution regarding the preferences 

of the user, and giving continuity to those segments where the 

motor is on.  
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