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Abstract

Multicarrier modulation is the common feature of high-data rate mobile wireless

systems. In that case, two phenomena disturb the symbol detection. Firstly,

due to the relative transmitter-receiver motion and a difference between the local

oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency

offset (CFO) affects the received signal. This leads to an intercarrier interference

(ICI). Secondly, several versions of the transmitted signal are received due to the

wireless propagation channel. These unwanted phenomena must be taken into

account when designing a receiver. As estimating the multipath channel and the

CFO is essential, this PhD deals with several CFO and channel estimation meth-

ods based on optimal filtering.

Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman

filter (EKF). It is based on a local linearization of the equations around the last

state estimate. However, this approach requires a linearization based on calcula-

tions of Jacobians and Hessians matrices and may not be a sufficient description

of the nonlinearity. For these reasons, we can consider the sigma-point Kalman

filter (SPKF), namely the unscented Kalman Filter (UKF) and the central differ-

ence Kalman filter (CDKF). The UKF is based on the unscented transformation

whereas the CDKF is based on the second order Sterling polynomial interpola-

tion formula. Nevertheless, the above methods require an exact and accurate a

priori system model as well as perfect knowledge of the additive measurement-

noise statistics. Therefore, we propose to use the H∞ filtering, which is known to

be more robust to uncertainties than Kalman filtering. As the state-space repre-

sentation of the system is non-linear, we first evaluate the “extended H∞ filter”,

which is based on a linearization of the state-space equations like the EKF. As an

alternative, the “unscented H∞ filter”, which has been recently proposed in the

literature, is implemented by embedding the unscented transformation into the

“extended H∞ filter” and carrying out the filtering by using the statistical linear

error propagation approach.

The above techniques have been implemented in different multicarrier contexts:

Firstly, we address the estimation of the multiple CFOs and channels by means



of a control data in an uplink orthogonal frequency division multiple access

(OFDMA) system. To reduce the amount of control data, the optimal filtering

techniques are combined in an iterative way with the so-called minimum mean

square error successive detector (MMSE-SD) to obtain an estimator that does

not require pilot subcarriers.

Then, as the SPKF gives a better compromise between computational complex-

ity and estimation performances when the noise characteristics are available, we

use this filter in a dynamic bandwidth allocation context. In that case, network

resources are dynamically adjusted to give the appropriate bandwidth to each

user at any time. This plays a key role in cognitive radio systems where the spec-

trum that is not used by licensed (primary) users must be detected in order to

be shared with unlicensed (secondary) users. However, harmful narrow band in-

terferences (NBI) produced by a cognitive radio system may appear. Therefore,

we propose to combine the estimation of the CFOs and channels by means of

SPKF with a statistical test to check whether there are interferences or not. Two

statistical tests, namely the binary hypothesis test (BHT) and the cumulative

sum (CUSUM) test, are studied.

Secondly, we deal with a system that combines orthogonal frequency division

multiplexing (OFDM) and the interleaved division multiple access (IDMA). The

OFDM-IDMA systems achieve a very high single-user capacity. However, the

complexity in the correction of the CFO effects is higher than in OFDMA sys-

tems. For that reason, we propose to modify the iterative architecture of the

IDMA receiver by using the estimations performed by a SPKF. In addition, an

iterative space-time block coding (STBC) OFDM-IDMA receiver is proposed.

The above optimal-filtering based architectures in the OFDMA and OFDM-

IDMA are compared with existing estimation methods. Simulation results clearly

show the efficiency of the proposed algorithms in terms of CFO estimation, chan-

nel estimation and bit error rate performances.

Keywords: Kalman filtering , EKF, CDKF, UKF, H∞ filtering, “extended H∞

filter”, “unscented H∞ filter”, multicarrier, OFDMA, OFDM-IDMA, CFO esti-

mation, channel estimation, cognitive radio.
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Introduction

For more than 25 years, a great deal of interest has been paid to mobile communi-

cation systems and the design of new schemes to transmit and receive information.

Engineers and researchers have worked much and exchanged on that topic.

Several PhD in the signal group at the UMR CNRS 5218 IMS have dealt with

channel estimation and symbol detection in multicarrier systems involving sev-

eral users. In [Jamo 07b], the channel was assumed to be an autoregressive (AR)

process. Jamoos suggested estimating both the channel and its AR parameters

by using training sequences and optimal filtering. To avoid an approach dedi-

cated to the non-linear estimation issue, mutually interactive optimal filters were

used. One filter aimed at estimating the channel, whereas the other updated the

estimation of the AR parameters. H∞ and Kalman filtering were tested and the

resulting approaches were studied in a multicarrier direct-sequence code division

multiple access system (MC-DS-CDMA). In [Grol 07], the channel was modeled

by a sinusoidal stochastic process or a low-pass filter version of an AR process.

Then, both the symbols and the Rayleigh fading channel were jointly estimated in

MC-DS-CDMA systems by using a Rao-Blackwellized particle filter cross-coupled

with a Kalman filter.

Despite the great success of the CDMA as a multiple access technique, the cur-

rent trend is to use the orthogonal frequency division multiple access (OFDMA)

and the orthogonal frequency division multiplexing-interleaved division multi-

ple access (OFDM-IDMA). In that case, the input data stream is split into a

number of streams that are transmitted in parallel over a large number of orthog-

onal subcarriers. The frequency-selective fading over the entire bandwidth of the

transmitted signal has hence the advantage of being converted in frequency-flat

fading over each subcarrier. It should be noted that these schemes are partic-

ularly well adapted to mobile wireless communication to provide high-data rate

services, e.g. [3GPP 09], [IEEE 06].

However, there are two unwanted phenomena:

1/ the channel remains unknown and hence has to be estimated.
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2/ The relative transmitter-receiver motion and a difference between the local-

oscillator (LO) frequencies at the transmitter and the receiver lead to a carrier

frequency offset (CFO). These CFOs that affect the received signal no longer

guarantee orthogonality between subcarriers. To avoid the resulting intercarrier

interference (ICI), a CFO estimation/correction step must be introduced at the

receiver.

In the literature, some authors focus their attentions on the CFO estimation

[More 04], [Zhao 06], [Jing 08], while others address the joint estimation of the

CFOs and the channels. More specifically, a conventional expectation-maxi-

mization (EM) algorithm is proposed in [Pun 04a] for an OFDMA uplink sys-

tem. Then, to reduce the computational cost of the EM algorithm, the authors

use the space alternating generalized expectation-maximization (SAGE) algo-

rithm. Instead of addressing a multidimensional optimization issue, the so-called

alternating projection estimator is used in [Pun 06]. This method consists in iter-

atively estimating the CFO of one user, by means of an exhaustive grid search over

the possible range of the CFO value and by setting the other CFOs to their last

updated values. In [Fu 06], Fu et al. propose two iterative estimation approaches

using the SAGE method. In [Sezg 08], Sezginer et al. propose an iterative sub-

optimal method. It is based on an approximation of a maximum likelihood (ML)

estimator to reduce the computational complexity of the EM-based algorithms.

Nevertheless, an initialization step is required in the above algorithms. Another

drawback of those methods is the high computational cost due to the iterative

estimation and the exhaustive grid search.

In this PhD dissertation, our contribution is twofold:

1/ from the estimation point of view: as the joint estimation of the CFO and

the channel is a non-linear estimation problem, we propose to use variants of

the Kalman filter and H∞ filter. Based on a comparative study, we evaluate the

performance of the approaches in two uplink multicarrier contexts: the OFDMA

and the OFDM-IDMA systems. Various criteria are taken into account, such as

the minimum mean square error (MMSE) on the CFO and the channel estimates,

and the computational cost.
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2/ From the digital-communication system point of view: we propose to combine

the above estimation methods with:

• the minimum mean square error successive detector (MMSE-SD) [Hou 08]

to increase the data rate for an OFDMA system [Pove 09a], [Pove 09b],

[Pove 11c].

• a statistical test, e.g. the binary hypothesis test (BHT) or the cumulative

sum (CUSUM) test, to detect the beginning and the end of the disturbances

induced by another system [Pove 11b], [Pove 11d]. This happens with cog-

nitive radio (CR) systems where the spectrum that is not used by licensed

(primary) users must be detected in order to be shared with unlicensed

(secondary) users1.

• a modified version of the iterative IDMA receiver [Ping 02a] to design a new

receiver scheme for an OFDM-IDMA system [Pove 12].

• a space time block code (STBC) and a new variant of the iterative IDMA

receiver [Pove 11a].

The PhD dissertation is organized as follows:

In the first chapter, we present different multiuser scenarios and then focus our

attention on those based on a multicarrier modulation. Thus, we look at two mo-

bile wireless communication systems: the conventional ones [IEEE 99], [IEEE 06]

and the cognitive radio (CR) systems [Mito 00]. The brief presentation of these

wireless systems allows us to introduce both the multipath propagation channel,

its statistical properties and the Doppler shifts. We also define the received faded

signal that is a superposition of several delayed and attenuated copies of the

transmitted signal.

Then, we present the multicarrier multiple access schemes that can be used in

these systems. Among them, we give details about multicarrier multiple ac-

cess schemes. We first present the OFDMA, which results from the combina-

tion between the frequency division multiple access (FDMA) and the OFDM.

1In that case, physical-layer parameters are dynamically adjusted to give the appropriate

bandwidth to each user at any time.
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Then, we look at the OFDM-IDMA scheme initially proposed by Mahafeno et al.

[Maha 06].

Whatever the multicarrier systems, the transmitted signals are subject to a CFO

and the multipath propagation channel. Therefore, we have to design new re-

ceivers taking into account both unwanted phenomena.

In chapter 2, we propose and compare several CFO and channel estimation meth-

ods based on optimal filtering techniques [Pove 10]. As the relation between the

CFO and the received signal is non-linear, a linearized version of the Least-

Squares (LS) approach can be first used to estimate the CFO. More generally, we

suggest using an extended Kalman filter (EKF). The EKF consists in analytically

propagating the estimation through the system dynamics, by means of a first-

order Taylor expansion of the functions defining the state-space representation

of the system. However, as the approximation may not be sufficient to describe

the non-linearity, the EKF may sometimes diverge. To solve this problem, a

second-order linearization can be considered and leads to the second-order EKF

(SOEKF) [Bar 01]. Another solution is to use the iterative extended Kalman

filter (IEKF). In the IEKF, the measurement model is linearized around the up-

dated state vector, instead of the predicted state vector. Then, the process is

iterated until the state vector estimate does not change much.

As the above approaches require the computation of the Jacobians and the Hes-

sians matrices for the first-order and the second-order linearizations respectively,

we also look at the sigma-point Kalman filter (SPKF) [VdMe 04a], namely the

unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF).

In that case, the state distribution is approximated by a Gaussian distribution,

which is characterized by the so-called sigma points. Then, the sigma points are

propagated through the non-linear system. A weighted combination of the re-

sulting values makes it possible to estimate the mean and the covariance matrix

of the transformed random variable. The UKF is based on the unscented trans-

formation whereas the CDKF is based on the second-order Sterling polynomial

interpolation formula.

Nevertheless, Kalman algorithms require an accurate system model as well as

perfect knowledge of the noise statistics. Therefore, we also propose to evaluate
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the performance of the H∞ filtering, which has been very popular in the field of

control and is more and more used in signal processing (see for instance [Shen 99],

[Laba 05] and [Gire 09]). This approach is designed to be robust against uncer-

tainties. In addition, no Gaussian assumption on the additive noise and the

model noise in the state-space representation of the system is required. Here, we

analyze the relevance of the “extended H∞ filter”, based on Taylor expansion like

the EKF and the “unscented H∞ filter” in which an unscented transformation is

embedded into the “extended H∞ filter” [Li 10].

Then, the above techniques are combined with different processing blocks to de-

sign new receiver schemes:

Firstly, the optimal filtering techniques are combined with the so-called

MMSE-SD [Hou 08] in an iterative way to obtain a CFO estimator that does

not require pilot subcarriers [Pove 09a], [Pove 09b], [Pove 11c].

Secondly, we use the SPKF in a dynamic bandwidth allocation context. The

SPKF is combined with a statistical test, either the BHT or the CUSUM test.

This approach allows the CFOs and the channels to be jointly estimated and the

beginning and the end of a narrow-band interference (NBI) produced by a CR

system to be detected [Pove 11b], [Pove 11d].

In chapter 3, we address the CFO and channel estimation problems in an OFDM-

IDMA context. Although this access technique has the potential to solve the

constant growth on the user density per cell, CFO and channel estimations have

not been widely addressed. The IDMA conventional receiver consists of an el-

ementary signal estimator (ESE) and several a posteriori probability decoders

(DECs) for the different users in the system. The ESE operation is based on

the constraint of the a priori knowledge of the multipath channels. However,

few papers deal with the channel estimation in IDMA systems. The reader may

refer to [Suya 08] and [Rehm 08] for channel estimation in OFDM-IDMA sys-

tems, where the system is assumed to be perfectly frequency synchronized. To

our knowledge, the frequency synchronization issue has never been addressed in

an OFDM-IDMA system.

Thus, we propose a new scheme, which operates in two steps. Firstly, CFOs

and channels are estimated for each user in the system, by using control data
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of one OFDM-IDMA symbol and a SPKF. Secondly, the OFDM demodulation

is performed without any CFO correction on the received signal [Pove 12]. The

resulting signal is inserted in a modified version of the iterative IDMA receiver,

initially proposed by [Ping 02a]. The second part of the chapter 3 deals with a

STBC-OFDM-IDMA receiver. In that case, we show how to modify the IDMA

iterative receiver by taking advantage of the spatial diversity introduced by the

multiple inputs [Pove 11a].

In each case, simulation results confirm the efficiency of the proposed architec-

tures in terms of CFO estimation, channel estimation, computational complexity

and BER performance.

Finally, conclusions and perspectives are given.

To help the reader, we also present six appendices:

• In the first one, we recall the main results about the Kalman filter in the

linear case.

• In the second appendix, the H∞ filtering in the linear case is presented.

• In the third one, we present a theoretical comparison between the Kalman

and the H∞ filters.

• In the fourth appendix, we introduce the EKF, the SOEKF and the IEKF.

• The fifth appendix is about the SPKF.

• Finally, the last appendix deals with the H∞ filtering for non-linear cases.

The “extended H∞ filter” and the “unscented H∞ filter” are presented.
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1. Multicarrier High-Data Rate Mobile Wireless Systems

1.1 Introduction

The purpose of this chapter is first to give general information about wireless

communication systems. Then, we present the unwanted phenomena that may

appear when transmitting wireless information. More particularly, the channel

plays a key role. Its statistical properties may also vary and depend on the exis-

tence of a line-of-sight (LoS) between the transmitter and the receiver. Notions of

frequency-selective fading or flat-fading channels are recalled. In the second part

of this chapter, we introduce the various access schemes. After recalling what

FDMA, time division multiple access (TDMA) and code division multiple access

(CDMA) are all about, OFDMA and OFDM-IDMA are presented.

1.2 Wireless Communication Systems

A great deal of interest has been paid to wireless communications for more than

hundred years. At the end of the 19th and the beginning of the 20th century,

Marconi was at the origin of the first radio transmission [Hanz 98], and wireless

communications began.

During the second half of the 20th century, successive modifications in wireless

communications were performed, and correspond to the development of the data

transmission over telephone networks, the creation of wireless local area networks

(WLANs) and the evolution of mobile wireless communications systems.

Today, these transformations in the field of wireless communications still con-

tinue. Conventional wireless systems, (e.g. WLANs or cellular networks) that

are usually based on a static frequency allocation are evolving to an intelligent

concept, where a dynamic frequency allocation can be allowed. Intelligent wireless

systems known as cognitive radio (CR) systems [Mito 99] are solutions proposed

to improve wireless communications.

This PhD dissertation thesis is devoted to two kinds of wireless communication

systems: conventional systems and CR systems. In the following subsections,

both types of systems are defined.
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1.2 Wireless Communication Systems

1.2.1 Conventional Systems

A conventional system corresponds to a current wireless system. Common ex-

amples of these systems can be WLANs, digital video broadcasting terrestrial

(DVB-T) or 3G cellular networks. For more details on the conventional wireless

systems, the reader is referred to [Rapp 02] and [Stal 05].

These types of systems use a static and predetermined frequency band allocation.

Moreover, each terminal is programmed to a limited number of tasks.

Even if conventional systems provide high-data rate services, the exponential in-

crease of data rates and the number of users have produced an overload of the

frequency spectrum. For instance, in December 2008, there were 4 billion of mo-

bile subscriptions [ITU 08] worldwide. In 2013, the number of 4G subscribers

worldwide is expected to exceed 90 million. To keep on providing high-data rate

services, developers and researchers have to find alternative technologies. The

next subsection deals with CR systems. This is a technology proposed as a solu-

tion to correct this frequency spectrum overload.

1.2.2 Cognitive Radio Systems

Mitola was the first one to employ the concept of CR [Mito 99] and defined it

as: “a radio that employs model-based reasoning to achieve a specified level of

competence in radio-related domains”.

CR systems have emerged as a new technology to improve the utilization of the

limited radio bandwidth. The key features of those systems are their awareness

and intelligence, which are achieved through learning via a cognition cycle (ob-

serve, decide and act). This intelligence allows CR systems to tune the system

parameters such as power, carrier frequency, and modulation at the physical layer,

and higher-layer protocol parameters to improve their utilization.

Nowadays, there is an overload of the frequency spectrum assigned to the con-

ventional systems. However, at the same time there is an underutilization of this

assigned frequency spectrum [Mito 00]. CR may be a solution to this issue. It can

be achieved by a spectrum shared by primary and secondary users. The sharing

techniques can be classified into underlay and overlay spectrum sharing. On the

one hand, when using underlay systems, the primary and secondary users share

9
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Figure 1.1: Cognition cycle

the same frequency spectrum. However, secondary users should transmit the sig-

nal with a low power that does not exceed an interference threshold [Pali 10]. On

the other hand, in overlay systems the secondary users have to find out the bands

that are not used by the primary users (PUs). Then, secondary users can utilize

these unused portions of the spectrum. For this purpose, the secondary users

need information about the spectrum allocation of the PUs by regularly perform-

ing spectrum sensing techniques. Various spectrum sensing techniques have been

proposed [Arsl 07]. Some of them aim at identifying the characteristics of the

transmission whereas others distinguish the signal type. The most common are

the matched filter, the cyclostationary feature detection and the energy detection

[Arsl 07]. For more details about CR systems, the reader is referred to [Pali 10].

Understanding that CR systems have the potential to exploit the underutilized

conventional system frequency bands by spectrum sharing, the Federal Commu-

nications Commission (FCC) released a second report in which unlicensed devices

are allowed to operate in the unused portions of the TV-spectrum in 2008.

CR systems will be considered in this PhD dissertation, in chapter 2, section 2.5.

In the following section, we present one of the more challenging tasks when de-

signing a wireless system, taking into account the influence of the propagation

channel.
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1.3 Propagation Channel Model

1.3 Propagation Channel Model

In mobile wireless communication systems, the transmitted signal arrives at the

receiver from different propagation paths. Such phenomenon occurs due to the

obstacles such as buildings, mountains, trees, etc., between the transmitter and

the receiver, as shown in figure 1.2.

Figure 1.2: Multipath propagation channel

Due to these obstacles, the transmitted signal is subject to:

• reflection: it arises when the plane waves are incident upon a surface with

dimensions that are very large compared to the wavelength.

• diffraction: it occurs when there is an obstruction between the transmitter

and receiver antennas. Secondary waves are then generated behind the

obstruction.

• scattering: it happens when the plane waves are incident upon an object,

the dimensions of which are of the order of a wavelength or less, and causes

the energy to be redirected in many directions.

Given these three mechanisms, a wireless propagation can be roughly character-

ized by some independent phenomena: path loss variation, shadowing and mul-

tipath fading. Mathematically, the path loss is only distance dependent, whereas
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the other two phenomena are statistically described. In the following, let us focus

our attention on the multipath effect.

The received signal is a superposition of several delayed and attenuated copies

of the transmitted signal. By considering a stationary propagation, the channel

propagation model h(τ) at time τ can be mathematically expressed as:

h(τ) =
L−1∑

l=0

A(l)δ(τ − τl) (1.1)

where L is defined as the number of paths, A(l) and τl = lTsamp are the amplitude

and the time delay associated to the lth path, respectively. In addition, Tsamp is

the sampling time.

Thus, the coefficients of the discrete-time channel impulse response (CIR) can be

stored in the following vector:

h = [h(0), h(1), . . . , h(l), . . . , h(L − 1)] (1.2)

Figure 1.3 shows an example of a CIR, where τmax represents the maximum chan-

nel delay spread in seconds.

0 1 2 3 4 5 6 7 8

h
(τ

)

τ
Tsamp

τmax

Figure 1.3: Channel impulse response with L = 9
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The fading that modifies the transmitted signal depends on the characteristics

of the channel and the nature of the transmitted signal. Moreover, the statis-

tical model of the channel is slightly different if the transmitter is in LoS with

the receiver. The multipath fading channel can be hence classified by looking at

its probability density distribution and its frequency response in the transmitted

signal bandwidth.

These classifications of fading are investigated in the next subsections.

1.3.1 Rician and Rayleigh Fading Channels

Due to the existence of a great variety of propagation environments, several sta-

tistical distributions have been proposed for channel modeling. However, in the

following let us consider the two most commonly used distributions: the Rayleigh

and Rician distributions.

In wireless systems, a predominant component of the transmitted signal is some-

times present at the receiver. If this predominant component can be the LoS wave

for instance, each coefficient of the CIR follows a Rician distribution [Jake 74].

Let us look at this case more carefully. When the received signal consists of a

large number of plane waves with different phases, it can be treated as a complex

Gaussian random process αr(n) = αI(n) + jαQ(n), where αI(n) and αQ(n) are

Gaussian random variables (GRVs) with non-zero means µI and µQ, respectively.

The processes are assumed to be uncorrelated and the GRVs have the same vari-

ance σ2
r . Then, the magnitude of the received signal has the following Rician

distribution:

Pdf (x) =
x

σ2
r

e
−

x2+µ2
r

2σ2
r I0

(

xµr

σ2
r

)

x ≥ 0 (1.3)

where µ2
r = µ2

I + µ2
Q is called the non-centrality parameter and I0

(
xµr

σ2
r

)

is the

zero-order modified Bessel function1 of the first kind [Stub 02].

1The zero-order modified Bessel function of the first kind is defined as:

I0(y)
∆
=

1

2π

∫ 2π

0

e−ycos(z)dz
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The received signal distribution can be rewritten by using the Rice factor defined

by:

Krice = µ2
r/2σ2

r (1.4)

and the average envelope power

E{|αr(t)|2} = Ωr = µ2
r + 2σ2

r (1.5)

Therefore, the distribution can be expressed as follows1:

Pdf(x) =
2x(Krice + 1)

Ωr

e−Krice−
(Krice+1)x2

Ωr I0



2x

√

Krice(Krice + 1)

Ωr



 x ≥ 0

(1.6)

Figure 1.4 shows examples of Rician distributions for differents values of Krice.

It should be noted that µ2
r characterizes the LoS wave. Therefore, if there is non

LoS wave, µ2
r = 0, i.e. Krice = 0. This is the case of a Rayleigh model.
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Figure 1.4: Rician distribution

Rayleigh channel model is the most common assumption in wireless systems. In

this case, propagation path consists of a two dimensional isotropic scattering. The

1It should be noted that: µ2
r = KriceΩr

Krice+1 and σ2
r = Ωr

2(Krice+1)
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plane waves arrive from many directions with equal probability without a direct

LoS component. Then, each coefficient of the CIR follows a Rayleigh distribution

[Jake 74]. Therefore, given (1.3) and under these assumptions, the magnitude of

the received signal has the following Rayleigh distribution:

Pdf (x) =
2x

Ωr

e− x2

Ωr x ≥ 0 (1.7)

where Ωr = E{|αr(t)|2} = 2σ2
r is the average envelope power [Stub 02].

Figure 1.5 shows examples of Rayleigh distribution for different values of Ωr.

In the following subsection, we present the frequency-selective and the time-

varying channels.
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Figure 1.5: Rayleigh distribution

1.3.2 Frequency-Selective and Time-Varying Fading Chan-

nels

The fading model can also be characterized by the nature of the transmitted

signal and the relative speed between the transmitter and the receiver. It can

be classified by the relationship between the transmitted signal bandwidth W ,
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that is proportional to the inverse of the symbol1 (M-PSK symbol) time Ts,

(i.e. W ∝ 1
Ts

) and the channel frequency response in this bandwidth.

Let us define the channel coherence bandwidth Wc as:

Wc =
1

τmax

(1.8)

On the one hand, if all the multipaths arrive at the receiver within the symbol

duration, the fading channel is considered as a frequency non-selective fading or

flat-fading channel. Then, the channel coherence bandwidth is higher than the

transmitted signal bandwidth:

W << Wc (1.9)

i.e.

τmax << Ts (1.10)

At the receiver, without the noise contribution, the signal is an attenuated copy

of the transmitted signal:

r(n) = hs(n) (1.11)

where s(n) is the received symbol, h is the CIR coefficient and r(n) is the received

symbol.

On the other hand, if the multipaths are spread outside the symbol duration, i.e.

the maximum channel delay spread is higher than the symbol time, the fading

channel is considered as a frequency-selective fading channel. In this case, the

transmitted signal bandwidth is higher than the channel coherence bandwidth:

W >> Wc (1.12)

i.e.

τmax >> Ts (1.13)

Therefore, without the noise contribution, the received signal is a superposition

of several transmitted attenuated and delayed signals. Mathematically, it can be

1In this PhD dissertation we consider M-ary phase shift keying (M-PSK) as the modulation

technique. It consists in changing the phase of the carrier frequency, where M is the number

of possible phases. For example, when using BPSK modulation the set of symbols is {−1, +1}
and when using QPSK the set of symbols can be {ej π

4 , ej 3π
4 , ej 5π

4 , ej 7π
4 }.
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expressed as the convolution between the transmitted signal and the CIR:

r(n) =
L∑

l=0

h(l)s(n − l) (1.14)

The received signal is spread in time and this leads to the so-called inter sym-

bol interference (ISI). Figure (1.6) shows the frequency response of a frequency-

selective fading channel.

In both cases, estimating and correcting the CIR, also called channel equaliza-

tion, is usually performed using a known signal at the receiver, called pilot signal.

Given (1.11) and (1.14), we can expect a higher complexity of the equalization

when dealing with frequency-selective channel.
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Figure 1.6: Frequency-selective fading channel

Furthermore, there is sometimes a relative motion between the transmitter and

the receiver in wireless systems. This results in a time-varying channel. The

channel can be divided in two categories depending on the ratio between the

transmitted symbol time Ts and the channel coherence time Tc.

Let us define the channel coherence time Tc as follows:

Tc =
1

f DOP
=

c

vfc

(1.15)
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1. Multicarrier High-Data Rate Mobile Wireless Systems

where the Doppler shift f DOP = v fc

c
is the maximum measure in Hertz of a relative

frequency shift between the transmitted and the received signal, v is the relative

speed between the transmitter and the receiver, fc is the frequency carrier and c

is the speed of the light.

The Doppler shift is caused not only by the transmitter-receiver relative motion,

but also by the movement of surrounding objects. It leads to frequency offsets at

the receiver.

If the channel coherence time is higher than the transmitted symbol time:

Ts < Tc (1.16)

the channel is considered as a slow-fading channel.

If the transmitted symbol time is higher than channel coherence time:

Ts > Tc (1.17)

the channel is considered a fast-fading channel.

Table 1.1 shows a classification of the fading channels according to the nature

of the transmitted signal and the relative speed between the transmitter and the

receiver

slow-fading channel fast-fading channel

flat-fading channel
τmax << Ts τmax << Ts

Ts < Tc Ts > Tc

frequency-selective channel
τmax >> Ts τmax >> Ts

Ts < Tc Ts > Tc

Table 1.1: Fading channel classification

In both cases, at the receiver, the frequency offset caused by the Doppler shift

has to be estimated in order to recover the original transmitted signal.

The design of a mobile wireless system implies the above technical challenges.

In the following, we present some schemes that have been proposed during the

last years to take into account the impact of the fading effects.
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1.4 Multiple Access Techniques for Mobile Systems

1.4 Multiple Access Techniques for Mobile Sys-

tems

In mobile wireless systems, a big challenge is to choose the multiple access tech-

nology that will efficiently share the available bandwidth among a large number

of users and that will be robust against the channel propagation effects. For the

past decades, the mobile wireless communication industry has searched for dif-

ferent techniques to allocate the communication resources to the different users.

The first public cellular radio system, known as advanced mobile phone service

(AMPS), was introduced at the end of the ’70s in the United States, shortly

followed by the Nordic mobile telephone system and the total access communica-

tion system (TACS) in Europe. At the same time, the Japaneses introduced the

Nippon automatic mobile telephone system (NAMTS) [Hanz 98]. These systems

were analog and are known as the 1st generation mobile wireless systems (1G).

All of them used FDMA as their multiple access scheme. In FDMA, the allocated

spectrum is divided into several frequency bands where each band is assigned to

one user, i.e. each user can communicate at the same time. See figure 1.7. Mul-

tiple users using separate frequency bands can access system on the same time

without significant interference from other users simultaneously operating in the

system [Stub 02].
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Figure 1.7: FDMA
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At the beginning of the ’90s, the 2nd generation mobile wireless systems (2G)

were developed, such as the digital AMPS in the United States, the global sys-

tem for mobile communications (GSM) in Europe and the personal digital cellular

(PDC) system in Japan [Hanz 98]. These systems employed TDMA as their mul-

tiple access scheme. When using TDMA, the whole bandwidth is assigned and

the time-domain transmission frame is divided into time slots, each assigned to

one user to transmit the data information [Stub 02]. See figure 1.8. TDMA is

used in the evolution of the 2G GSM standard, namely the general packet radio

service (GPRS) and the enhanced data rates for GSM Evolution (EDGE) sys-

tems.
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Figure 1.8: TDMA

Nevertheless in FDMA and TDMA, the number of frequency bands or time slots

is fixed for a given system, and one frequency band/time slot is assigned to one

user during the whole period of communications. This guarantees the service

quality for real-time and constant-bit-rate voice telephony. However, as the num-

ber of services is increasing from simple voice to multimedia traffic with different

requirements, fixed frequency band or time slot assignments have shown their

limitations, especially with the increasing number of users in the system. For

that reason, CDMA scheme, based on spread spectrum technology, has emerged.

In CDMA systems, the relatively narrow-band users information is spread into a

much wider spectrum using a high chip rate spreading code. When using different
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1.4 Multiple Access Techniques for Mobile Systems

codes, multiple user information can be transmitted on the same frequency band

at the same time. See figure 1.9. The spreading code of each user is orthogonal1

to the codes of all other users to minimize the multiple access interference (MAI)

produced by other users [Schu 05]. The 2G American system IS-95 was the first

mobile cellular communication system to use CDMA technology followed by the

CDMA 2000 technology [Stub 02].
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Figure 1.9: CDMA

The digital 2G has shown higher transmission capacity and better voice quality

than the analog 1G. Like the 1G, 2G was primarily designed to support voice

communication. In the last releases of these standards, capabilities were intro-

duced to support data transmission. However, the data rates were generally lower

than those supported by the existent bandwidth. Thus, an initiative of the inter-

national telecommunication union (ITU) laid the way for evolution to 3rd genera-

tion mobile wireless systems (3G). Requirements such as a specific high-data rate

and support for vehicular mobility were established. Both the GSM and CDMA

camps formed their own separate 3G partnership projects, the 3GPP and 3GPP2,

respectively. Within the 3GPP evolution track, the 2G GSM/GPRS/EDGE fam-

ily is based on TDMA and FDMA, whereas the 2G IS-95/CDMA 2000 is based

on TDMA and CDMA in the 3GPP2. See table 1.2.

1Two vectors x(n) and y(n) are orthogonal if their dot product 〈x(n), y(n)〉=∑∞
−∞ x(n)y(n)

is equal to zero.
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The 3G in the 3GPP was first referred to the universal mobile telecommunica-

tion system wideband CDMA (UMTS WCDMA). Then, it evolved in the high-

speed downlink and uplink packet access (HSDPA and HSUPA) enhancements

and in the high-speed packet access plus (HSPA+) enhancement. Meanwhile in

the 3GPP2, the 3G was known as the CDMA evolution-data optimized (CDMA

EVDO) [Sesi 09]. All these systems use CDMA as their multiple access tech-

nique. The number of orthogonal codes used for uplink transmission1 from one

user is limited to a few codes or complex techniques are used to limit the uplink

signal peakiness and to improve the low noise amplifier efficiency2. In addition,

CDMA usually employs a rake receiver [Proa 95] technique to suppress multipath

effects and the related cost increases with the number of paths. Therefore, the

complexity of the receiver can be very high for a high-data rate mobile wireless

systems.

1.4.1 About Multicarrier Multiple Access Techniques

One solution to transmit the signal over a multipath frequency-selective and time-

varying fading channel, without ISI, is to choose a transmitted signal bandwidth

very higher than the Doppler shift and much lower than the channel coherence

bandwidth, fd << W << Wc, i.e τmax << Ts << Tc. See section 1.3.2.

This hypothesis is true for low data rate and low mobility systems. When a high

data rate system is considered usually, one has:

Ts << τmax << Tc (1.18)

To avoid the ISI, a solution could be to divide the entire bandwidth W in several

subbands of size ∆f << Wc and to send a large number of narrow-band signals

over several parallel subcarriers in the frequency band assigned to the transmis-

sion. This is the concept of a multicarrier modulation.

The preferred case of multicarrier modulation is the one that uses an orthogonal

1In the uplink transmission, the transmitter is the user and the receiver is the base station.
2For example, when using CDMA for an uplink transmission, a complex successive inter-

ference cancellation method is required to improve the performance of the receiver.
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Family Generation Standard
Peak Data Rates

Radio Access
Downlink (Mbits/s) Uplink (Mbits/s)

3GPP

2G

GSM 0.04 0.01

FDMA,

TDMA

GPRS 0.17 0.13

EDGE 0.47 0.36

EDGEev 1.89 1.42

3G

UMTS
0.38 0.38

WCMA

HSDPA 14.4 — CDMA,

HSUPA — 5.76 OFDMA,

HSPA+ 42.2 11.5 SC-FDMA

4G LTE 300 50

LTE-A 1000 500

IEEE
3G

WiMAX
128 56

OFDMA

802.16e

WiMAX
300 135

802.16m

4G WiMAX 2 1000 500

3GPP2

2G

IS-95 0.115 0.115

CDMA
0.307 0.307 TDMA,

CDMA
2000

3G
CDMA

73.5 27
EVDO

Table 1.2: Mobile standards evolution from 2G to 4G.

basis, namely the orthogonal frequency division multiplexing (OFDM)1 [Bing 90].

In this scheme, the input symbols are transmitted at the same time over orthogo-

nal subcarriers [Wein 71]. See figure 1.10. The main idea of OFDM is to convert a

frequency-selective channel in the time domain into a collection of frequency-flat

channels in the frequency domain.

OFDM increases robustness against multipath distortions, making the system ro-

bust against ISI. In addition, OFDM systems use a cyclic prefix (CP) to combat

interblock interference (IBI). The CP consists in prefixing the OFDM symbol

with the end of it2. The above advantages allow the channel equalization to be

easily performed in the frequency and time domains through a bank of one-tap

multipliers [Cimi 85]. Furthermore, OFDM exploits the spectral diversity and

allows an independent selection over each subcarrier of resources, such as power,

constellation size and necessary bandwidth [Kell 00], in order to maximize the

1Orthogonality between two frequencies fk, fk′ is defined as
〈
ej2πfkt, ej2πfk′ t

〉
= δk,k′ , where

δk,k′ = 0 if k = k′, and δk,k′ = 1 if k 6= k.
2The CP is detailed in subsection 1.4.2.1.
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Figure 1.10: OFDM

link efficiency.

OFDM has been adopted in several communication standards such as digital

audio broadcasting (DAB) [ETSI 95], DVB-T [ETSI 97], and the WLAN IEEE

802.11a [IEEE 99].

The OFDM concept has been extended to multiuser communication scenarios. In

the following subsections three different multiple access schemes based on OFDM

are presented:

• OFDMA,

• single carrier frequency division multiple access (SC-FDMA),

• and OFDM-IDMA.

1.4.1.1 About OFDMA

This scheme was originally suggested for cable TV (CATV) networks [Sari 98]

and in the uplink communication of the Interaction Channel for Digital Terres-

trial Television (DVB-RCT) [ETSI 01]. The institute of electrical and electronics

engineers (IEEE) 3G project, called the mobile worldwide interoperability of mi-

crowave access (WiMAX) [IEEE 06] uses ODFMA technology. The last releases

of the 3GPP and 3GPP2, known as the long term evolution (LTE) and ultra
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mobile broadband (UMB) respectively, are based on OFDMA1. Note that LTE

uses OFDMA in the downlink communication2 [3GPP 09].

In this scheme, unlike the OFDM case where all subcarriers are assigned to a

single user, subcarriers are divided in several mutually exclusive subchannels and

they are exclusively assigned to a particular user in an OFDMA network. See

figure 1.11.

OFDMA inherits from OFDM the flexibility for simultaneous transmissions and

frequency allocation algorithms aim at exploiting the spectral diversity to allo-

cate the communication resources to the different users. In addition, OFDMA

inherits the ability to compensate channel distortions in the frequency domain

without computationally demanding time domain equalizers.

In subsection 1.4.2, more details about the OFDMA system are presented.
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Figure 1.11: OFDMA

1.4.1.2 About SC-FDMA

SC-FDMA is a modified form of OFDMA with similar throughput performance

and complexity. It is used as multiple access technique in the LTE uplink com-

1The 3GPP2 announced it was ending development of the UMB technology, favoring LTE

instead.
2In the downlink transmission, the transmitter is the base station and the receiver is the

user.
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munication [3GPP 09]. In this multiple access scheme, the symbols pass through

a discrete Fourier transform before going through the standard OFDMA mod-

ulation. This is often viewed as a DFT-coded OFDM. Thus, SC-FDMA in-

herits all the advantages of OFDMA over other well-known techniques such as

TDMA and CDMA. SC-FDMA brings additional benefit of low peak-to-average

power ratio (PAPR) compared to OFDMA, making it suitable for uplink trans-

missions [Sesi 09]. The SC-FDMA transceiver has similar structure as a typical

OFDMA system except the addition of a new DFT block before subcarrier map-

ping. Hence, SC-FDMA can be considered as an OFDMA system with a DFT

mapper.

1.4.1.3 About OFDM-IDMA

When using OFDMA and SC-FDMA, an MAI free transmission can be achieved

by allocating different subcarriers to different users. Thus, if there are more than

one user in the system, the entire bandwidth has to be shared by all the users.

This may limit the data rate.

In 2002, Ping et al. [Ping 02a] proposed the interleave-Division Multiple Access

(IDMA) for asynchronous1 spread-spectrum mobile systems. Whereas transmit-

ters can be defined by using different orthogonal codes in CDMA systems, they

are distinguished by a different chip-level interleaver in IDMA systems. While

CDMA allows the MAI to be suppressed using the different codes, IDMA requires

an iterative process. Like CDMA, the entire bandwidth can be allocated to a sin-

gle user, achieving a very high single-user capacity when using IDMA.

IDMA systems require a method to suppress multipath effects and avoid the ISI.

One solution may be to use an ISI cancellation method as in [Ping 06]. However,

the corresponding computational cost of this method increases linearly with the

number of paths and may be unsuitable for high-data rate systems.

To solve this constraint, a scheme that combines OFDM and IDMA has been

proposed by Mahafeno et al. [Maha 06]. This architecture combines most of

the advantages of the OFDM and the IDMA and avoids their individual disad-

vantages. When an OFDM-IDMA is considered, ISI is resolved by an OFDM

1The users of an IDMA system do not have to be time-synchronized one to another.
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modulation and MAI is suppressed by the IDMA iterative reception.

In the next subsection, we focus our attention on the OFDMA system. Then, in

subsection 1.4.3, the OFDM-IDMA system will be presented in details.

1.4.2 OFDMA System

Basically, the OFDMA system is equivalent to an OFDM system. The difference

is that each OFDMA symbol simultaneously carries the information for multiple

users while OFDM system carries data of a single specific user.

Let us consider an OFDMA system consisting of a single base station (BS) and

U simultaneously users performing an uplink communication1.

The U users share the bandwidth W , divided in K subcarriers to perform a trans-

mission. The users are numbered from 1 to U , i.e u ∈ {1, . . . U}. In the following

the subscript u denotes the information associated to the uth user. In addition,

the overall subcarriers are numbered from 0 to K − 1, i.e k ∈ {0, . . . K − 1}. The

subcarriers are grouped in K subchannels. One or more subchannels may be al-

located to the same user depending on its requested data rate. As the maximum

number of users that the system can simultaneously support is limited to K, it is

assumed that U ≤ K.

1.4.2.1 OFDMA Uplink Transmitter

This subsection describes the OFDMA transmitter model. After channel coding

and modulation, the symbols are grouped into blocks of length Ku < K, where
∑U

u=1 Ku = K.

Carrier Allocation Strategy (CAS)

The OFDMA transmitter performs the CAS. Three possible strategies [Wang 04]

to distribute subcarriers among the active users have been proposed:

1In the OFDMA uplink communication, the receiver is the BS. Then, the received signal

is a superposition of the signals transmitted by each user. Thus, the synchronization and the

equalization in this case are more difficult than in the downlink case, where the user only

receives the signal transmitted by the BS.
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• Subband CAS: each subchannel is composed by a group of Ku adjacent

subcarriers. The main drawback of this scheme is that it does not exploit

the frequency diversity of the multipath channel since a large fading might

strike a substantial number of subcarriers for a given user. See figure 1.12.
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Figure 1.12: Subband CAS

• Interleaved CAS: the subcarriers of each user are uniformly spaced over the

signal bandwidth at a distance K from each other. This method can exploit

the channel frequency diversity. See figure 1.13.
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Figure 1.13: Interleaved CAS
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• Generalized CAS: each user can select the best subcarriers that are currently

available, e.g. those with the highest signal-to-noise ratios (SNRs). In this

allocation strategy, there is no rigid association between subcarriers and

users; the generalized CAS allows dynamic resource allocation and provides

more flexibility than the other CAS. When using generalized CAS, a priori

knowledge of the propagation channel is necesssary, i.e. the transmitter

needs a channel feedback. See figure 1.14.
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Figure 1.14: Generalized CAS

Then, the CAS maps the Ku symbols (M-PSK symbols) of each block to the

subcarriers assigned to the uth user. This operation is easily performed by ex-

tending the block with the insertion of K −Ku zeros. The resulting column vector

of dimension K is defined as follows:

Su
∆
= [Su(0), Su(1), . . . , Su(k), . . . Su(K − 1)]T (1.19)

according to the frequency allocation of each user, Su(k) is non-zero if the kth

subcarrier is allocated to the uth user. Su(k) is the symbol associated to the kth

subcarrier. The resulting block has a time duration T = KTs. In the following

let T be the OFDMA symbol time duration.
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Inverse Fast Fourier Transform (IFFT)

To obtain the OFDMA symbol, the symbols are sent in parallel over orthogonal

subcarriers by using a K-dimensional IFFT step [Wein 71] as follows:

Xu(n) =
K−1∑

k=0

Su(k)ej2π kn
K 0 ≤ n ≤ K − 1 (1.20)

Then, the IFFT output samples are gathered into a vector, resulting in the

OFDMA symbol:

Xu
∆
= [Xu(0), Xu(1), . . . , Xu(n), . . . , Xu(K − 1)]T

= FHQuSu

(1.21)

where FH is the K × K IFFT matrix and F is the K × K fast Fourier transform

(FFT) matrix defined as1:

F =













1 1 1 . . . 1

1 e− j2π

K e− j4π

K . . . e−
j2(K−1)π

K

1 e− j4π

K e− j8π

K . . . e−
j4(K−1)π

K

...
...

...
. . .

...

1 e−
j2(K−1)π

K e−
j4(K−1)π

K . . . e−
j2(K−1)2π

K













(1.22)

In addition, Qu is the CAS diagonal matrix where the kth coefficient of the main

diagonal is given by:

Qu(k, k) =

{

1 if Su(k) 6= 0
0 elsewhere

(1.23)

Adding a Cyclic Prefix (CP)

At the receiver due to the multipaths, the lth copy of a determined OFDMA

symbol2 arrives with a time delay τl, where l ∈ {0, . . . Lu − 1} and Lu is number

of paths of the channel. See section 1.3. Then, some samples of the OFDMA

symbol interfere with the adjacent OFDMA symbol causing IBI.

The next step of the OFDMA transmitter consists in introducing the cyclic prefix

(CP), that is a repetition of the Ng last samples of the vector Xu at the beginning

of it. The CP makes the OFDMA symbol robust to IBI. By inserting a CP of

1It should be noted that FFH = IK .
2The users are assumed to be time-synchronized one another.
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Figure 1.15: Cyclic prefix, where m denotes the OFDMA symbol index

size Ng ≥ max
u

(Lu), the interferences between adjacent OFDMA symbols are

avoided. To maintain acceptable data throughput, the CP length must be chosen

just greater than the CIR length. See figure 1.15 which shows the advantage of

adding the CP.

Thus, a CP of size Ng is inserted to Xu such that:

Xu(n) = Xu(n + K) for − Ng ≤ n < −1 (1.24)

Then, the OFDMA symbol to be transmitted of size KT = K + Ng is expressed

as:

XCP

u
∆
= [Xu(K − Ng), . . . , Xu(K − 1), Xu(0), . . . , Xu(K − 1)]T (1.25)

Parallel/Serial Converter (P/S)

The OFDMA symbols pass through a parallel-serial converter (P/S) and are

stored to compose the OFDMA frame to be transmitted. A simplified OFDMA

transmitter scheme is shown in figure 1.16.

The OFDMA frame is then inserted in a digital/analog (D/A) converter and

the output signal is modulated to the carrier frequency of the local oscillator

(LO). Finally, the signal passes through the power amplifier and it is transmitted

over the channel. Figure 1.17 shows the OFDMA spectrum. It should be noted

that the distance in the frequency domain between two adjacent subcarriers is

∆f = 1
KTs

= 1
T

.

As an example, table 1.3 shows the IEEE 802.16 OFDMA Wireless MAN system
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parameters, which uses OFDMA for the uplink transmisssion.

In the following, let us look at the OFDMA uplink receiver.

CP-OFDMA modulation

CAS
ADD
CP

IFFT P/S

symbols to be
transmitted XCP

uXuSu

Figure 1.16: Simplified OFDMA transmitter for the uth user, where Xu is the

OFDMA symbol

Power
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User 1
User 2
User 3
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∆f = 1

T

Figure 1.17: OFDMA spectrum, where fk is the subcarrier frequency

System parameters Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

System bandwidth (MHz) 1.25 2.5 5.0 10 20

Sampling frequency (MHz) 1.429 2.857 5.714 11.429 22.857

Sampling period (ns) 700 350 175 88 44

FFT size 128 256 512 1024 2048

Subcarrier spacing 11.16 kHz

CP duration 11.2 µs

OFDMA symbol duration 100.8 µs

Table 1.3: Physical layer parameters of IEEE 802.16 Wireless MAN
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Tolerance=fLO
u

fc
(ppm) f LO

u (kHz) f DOP
u + f LO

u (kHz) ǫu

4 10.40 11.12 0.9966

3 7.80 8.52 0.7636

2 5.20 5.92 0.5306

1 2.60 3.32 0.2977

0.5 1.30 2.02 0.1812

Table 1.4: CFO values for different values of LO tolerance, using the IEEE 802.16

Wireless MAN system parameters, vu = 300 km/h and fc=2.6 GHz

1.4.2.2 OFDMA Uplink Receiver

After down-conversion and low-pass filtering, the received signal passes into an

analog-to-digital (A/D) converter, where it is sampled at the frequency Fs = 1
Ts

.

The signal received by the BS is a superposition of the contributions from the

U active users. After the time synchronization, the received OFDMA symbol of

size KT can be expressed as:

RCP =
U∑

u=1

RCP

u + BCP (1.26)

where BCP is a zero-mean AWGN vector with variance σ2
BIKT and

RCP

u
∆
= [Ru(K − Ng), . . . , Ru(K − 1), Ru(0), . . . , Ru(K − 1)]T (1.27)

At the BS, the signal transmitted by each user has been affected each propagation

channel, thus:

RCP

u (n) = ej2π ǫun
K

Lu−1∑

l=0

hu(l)Xu(n − l) − Ng ≤ n ≤ K − 1 (1.28)

where hu(l) is the lth coefficient of the CIR, ǫu = K(f DOP
u +f OSC

u )Ts is the carrier

frequency offset (CFO) normalized to the subcarrier spacing, f DOP is the Doppler

shift and f OSC
u is the frequency difference in Hertz between the carrier frequencies

of the LOs . Tables 1.4 and 1.5 show examples of the CFO magnitudes.

Then, at the OFDMA uplink receiver a CFO estimation/correction is necessary

(See chapter 2). Let us consider that this step is performed perfectly. Then,
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relative speed (km/h) f DOP
u (Hz) ǫu

300 722.22 0.0647

200 481.48 0.0431

100 240.74 0.0216

80 192.59 0.0173

60 144.44 0.0129

Table 1.5: CFO values for different relative speeds, using the IEEE 802.16 Wire-

less MAN system parameters and fLO
u = 0 Hz

removing the CP, the contribution from each user to the nth sample of the received

OFDMA symbol can be expressed as:

Ru(n) =
Lu−1∑

l=0

hu(l)Xu(n − l) 0 ≤ n ≤ K − 1 (1.29)

Then, the contribution from each user to the received OFDMA symbol at the

BS satisfies:

Ru
∆
= [Ru(0), Ru(1), . . . , Ru(n), . . . , Ru(K − 1)]T

= huXu

(1.30)

where hu is a K × K circulant matrix1 defined as:

hu =




















hu(0) 0 . . . 0 hu(Lu − 1) . . . hu(1)

hu(1) hu(0)
. . . 0 0

. . . hu(2)
...

. . . . . . . . . . . . . . .
...

hu(Lu − 1) hu(Lu − 2)
. . . hu(0) 0

. . . 0

0 hu(Lu − 1)
. . . hu(1) hu(0)

. . .
...

...
. . . . . . . . . . . . . . .

...
0 0 . . . hu(Lu − 1) hu(Lu − 2) . . . hu(0)




















(1.31)

1Due to the CP, at the reception, the convolution between the transmitted signal and the

channel can be expressed a circular convolution.

34



1.4 Multiple Access Techniques for Mobile Systems

Finally, given (1.30) the received OFDMA symbol can be expressed as:

R
∆
= [R(0), R(1), . . . , R(n) . . . , R(K − 1)]T

=
U∑

u=1

Ru + B

=
U∑

u=1

huXu + B

(1.32)

where B = [B(0), B(1), . . . , B(n) . . . , B(K − 1)]T is a zero-mean AWGN vector

with variance σ2
BIK .

Then, to recover the transmitted symbols, an FFT step is performed over the

received OFDMA symbol R as follows:

r
∆
= [r(0), r(1), . . . , r(k), . . . , r(m, K − 1)]T

= FR

=
U∑

u=1

FhuXu + b

(1.33)

where b = FB.

Then, given (1.21), (1.22) and (1.23), (1.33) can be rewritten as:

r =
U∑

u=1

FhuF
︸ ︷︷ ︸

Hu

QuSu + b

=
U∑

u=1

HuQuSu + b

(1.34)

where Hu = diag {[Hu(0), hu(1), . . . , Hu(K − 1)]} is the channel frequency re-

sponse matrix, the entries of which are the channel frequency responses associated

to the kth subcarrier:

Hu(k) =
L−1∑

l=0

hu(l)e−j2π kl
K (1.35)

Then, r(k) can be expressed as:

r(k) =
U∑

u=1

Hu(k)Su(k) + b(k) (1.36)

where Su(k) 6= 0 if the kth subcarrier is allocated to the uth user and

b(k) =
∑K−1

n=0 B(n)e−j2π nk
K .
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After subcarrier selection, the symbols r(k) pass through channel equalizers

(EQU) to obtain the transmitted symbols. It should be noted that due to the

diagonal scheme of the matrix Hu the channel equalization can “easily” be per-

formed. The OFDMA uplink receiver block scheme is shown in figure 1.18.

CP-OFDMA demodulation

Time
synchronization

CFO
estimation/

correction

FFT
Removing

CP

subcarrier
selection

Qu

EQUs

RCP

R r

Figure 1.18: OFDMA uplink receiver

In this subsection, we assume a perfect CFO estimation/correction. In addi-

tion, we do not give details about the channel equalization. The CFO estima-

tion/correction and channel equalization are usually performed using a preamble

and/or pilot subcarriers. The preamble is a training sequence known by the re-

ceiver, whereas the pilot subcarriers are frequency subcarriers with high power

that carry a sequence known by the receiver. Those important issues have to

be considered in the design of an OFDMA mobile wireless system. In chapter

2, we propose several techniques for the frequency synchronization and channel

equalization.

In the following subsection, the OFDM-IDMA scheme is presented.

1.4.3 OFDM-IDMA System

The main difference between OFDM-IDMA and OFDMA is that the entire band-

width of the system can be allocated to all users at the same time. Therefore,

CAS is not necessary, reducing the complexity of the OFDM-IDMA transmitter.

Let us define an OFDM-IDMA system consisting of a single BS and U simultane-

ously users performing an uplink communication, as defined in section 1.4.2. The

U users share the bandwidth W , divided in K subcarriers to perform a transmis-

sion. The users are numbered from 1 to U , i.e u ∈ {1, . . . U}. In the following
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the subscript u denotes the information associated to the uth user. In addition,

the overall subcarriers are numbered from 0 to K − 1, i.e k ∈ {0, . . . K − 1}.

1.4.3.1 OFDM-IDMA Uplink Transmitter

IDMA transmitter

The bits of the uth user to be transmitted are encoded by a low-rate encoder

(ENC), which consists of an association of channel coding1 and spreading code of

size S. The encoded bits pass through the interleaver
∏

u and then are modulated.

The symbols are divided into blocks of length K; the resulting IDMA modulated

block is:

Su
∆
= [Su(0), Su(1), . . . , Su(k), . . . Su(K − 1)]T (1.37)

CP-OFDM Modulation

An IFFT is performed over the IDMA modulated symbol as in (1.20) resulting

in the OFDM-IDMA symbol:

Xu
∆
= [Xu(0), Xu(1), . . . , Xu(k), . . . Xu(K − 1)]T (1.38)

At that time, a CP is inserted as in (1.24). The OFDM-IDMA symbols pass

through a P/S and are stored to compose the OFDM-IDMA frame to be trans-

mitted. The basic principles of an OFDM-IDMA transmitter is shown in figure

1.19. Finally, as for the OFDMA transmitter, the OFDM-IDMA frame is inserted

in a D/A converter, modulated to the carrier frequency of the LO, amplified and

transmitted over the channel.

1.4.3.2 OFDM-IDMA Uplink Receiver

As in the OFDMA uplink receiver, after down-conversion and low-pass filtering,

the received signal passes into an A/D converter. At the BS, it has been affected

by the propagation channel. Thus, the transmitted OFDM-IDMA symbol is

affected by the different CFOs and multipath channels. As presented in subsection

1Depending on the targeted system performance, the channel coding can be inserted or not.
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ENC modulation
∏

u
CP-OFDM
modulation

bits to be
transmitted Su

IDMA transmitter

Xu

Figure 1.19: OFDM-IDMA transmitter for the uth user, where
∏

u represents

the interleaver

1.4.2.2, the OFDM-IDMA received symbol after time-synchronization, frequency

synchronization and CP removing can be expressed as follows:

R =
U∑

u=1

Ru + B

=
U∑

u=1

huXu + B

(1.39)

where B = [B(0), B(1), . . . , B(n) . . . , B(K−1)]T is zero-mean AWGN vector with

variance σ2
BIK and hu is the channel circulant matrix as is expressed in (1.31).

Thus, after the FFT step the received symbol can be expressed as:

r
∆
= [r(0), r(1), . . . , r(k), . . . , r(K − 1)]T

= FR

=
U∑

u=1

FhuXu + b

(1.40)

with r(k) defined in (1.36).

The receiver consists of an ESE and U a posteriori probability DECs, one for each

user. The two steps are considered separately. The results are then combined

by using an iterative process. The DECs produce hard decisions to obtain the

estimations of the transmitted bits during the final iteration1.

Let us denote the a priori extrinsic logarithm likelihood ratios (LLRs) about

Su(k) by:

gu(k)
∆
= log

(

Pb{Su(k) = +1}
Pb{Su(k) = −1}

)

(1.41)

1It should be noted that the IDMA receiver may be applied to real and complex signals

[Maha 07]. However, for the sake of simplicity, let us consider a BPSK modulation.
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where Pb{.} is the probability distribution of {.}.

In the following let us distinguish gESE
u (k) and gDEC

u (k) the a priori LLRs used by

the ESE and DECs, respectively.

The ESE uses r(k) and gESE
u (k) as inputs and only the channel frequency re-

sponse Hu = [Hu(0), . . . , Hu(k), . . . , Hu(K − 1)] is considered. Knowing Hu, the

a posteriori LLRs about Su(k) are defined as1:

log

(

Pb{Su(k) = +1|r(k), Hu}
Pb{Su(k) = −1|r(k), Hu}

)

= log

(

Pb{Su(k) = +1|Hu}
Pb{Su(k) = −1|Hu}

)

+ gESE

u (k)

= gESE

u (k) + gESE

u (k)

(1.42)

where gESE
u (k) is the extrinsic LLR about Su(k) based on the channel observation

and the a priori information of the other users, excluding the uth treated user.

Then, if gDEC
u = [gDEC

u (0), . . . , gDEC
u (k), . . . , gDEC

u (K −1)] are the inputs of the uth

user DEC, the a posteriori LLRs about Su(k) are generated based on the code

ENC as:

log

(

Pb{Su(k) = +1|ENC, gDEC
u }

Pb{Su(k) = −1|ENC, gDEC
u }

)

= log

(

Pb{Su(k) = +1|g̃DEC
u }

Pb{Su(k) = −1|g̃DEC
u }

)

+ gDEC

u (k)

= gDEC

u (k) + gDEC

u (k)
(1.43)

where g̃DEC
u is obtained by setting gDEC

u (k) = 0 in gDEC
u . The outputs of the DEC

for the uth user consists of the extrinsic LLRs gDEC
u (k).

During the iterative process, the extrinsic information generated by the ESE

gESE
u (k) after deinterleaving is used as the a priori information in the DEC:

gESE

u (k)

∏−1

u⇒ gDEC

u (k) (1.44)

where

∏−1

u⇒ represents the deinterleaving process and
∏−1

u is the deinterleaver.

Furthermore, the extrinsic information generated by the DEC gDEC
u (k) after in-

terleaving is used as the a priori information in the ESE:

gDEC

u (k)

∏

u⇒ gESE

u (k) (1.45)

1In Bayesian statistics, the a posteriori probability distribution of a random variable x

based on the observations of y is expressed as follows: Pb{x|y} = Pb{y|x}Pb{x}
Pb{y} , where Pb{x} is

the so-called a priori probability distribution of x. As the denominator does not depend on x,

the so-called a posteriori probability distribution can be rewritten as: Pb{x|y} = Pb{y|x}Pb{x}
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where

∏

u⇒ represents the interleaving process. As there is any a priori information

at the first iteration, the initial values of all gESE
u (k) are set to zeros.

On the one hand, the a posteriori probability DEC is a standard function that

depends on the ENC, such as convolutional or turbo codes [Ping 01], [Berr 93].

The reader may refer to [Ping 01] and [Berr 93] for more details about the DECs.

On the other hand, let us present details about the ESE. The ESE generates coarse

estimates of the symbol Su(k). The symbol is treated as a random variable and

the a priori LLR gESE
u (k) about Su(k) is obtained by updating gDEC

u (k) as shown

in (1.45). Given (1.41) we have [Maha 06]:

µu(k) = E{Su(k)} ∆
=

egESE
u (k) − 1

egESE
u (k) + 1

= tanh

(

gESE
u (k)

2

)

∀u, k (1.46)

υu(k) = Var{Su(k)} ∆
= 1 − (µu(k))2 ∀u, k (1.47)

where E{.} and Var{.} represents the mean and the variance of {.}, respectively.

For the initialization process, gESE
u (k) = 0 for i = 1, where i denotes the iteration

number with i ∈ {1, . . . , Iidma}, where Iidma is the maximum number of iterations.

Let us recall the expression of the received symbol r(k) done for the OFDMA

uplink receiver in (1.36):

r(k) =
U∑

u=1

Hu(k)Su(k) + b(k) (1.48)

where Su(k) 6= 0 ∀k.

Let us rewrite (1.48) as:

r(k) = Hu(k)Su(k) + ςu(k) (1.49)

where ςu(k) =
∑U

u′=1

u′ 6=u

H ′
u(k)Su′(k) + b(k) represents the interference-plus-noise

component in r(k).

Then, assuming that Su are independent and identically distributed random vari-

ables, and applying the central limit theorem1, a Gaussian approximation for ςu(k)

1The central limit theorem states that the mean of a very large number of independent

random variables, each one with finite mean and variance, can be approximated by a Gaussian

distribution.
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and r(k) can be considered. Thus, ςu(k) can be completely characterized by its

mean and variance:

E{ςu(k)} = E{r(k)} − Hu(k)µu(k) ∀u, k (1.50)

Var{ςu(k)} = V ar{r(k)} − (Hu(k))2υu(k) ∀u, k (1.51)

where

E{r(k)} =
U∑

u=1

Hu(k)µu(k) ∀u, k (1.52)

Var{r(k)} = σ2
B +

U∑

u=1

(Hu(k))2υu(k) ∀u, k (1.53)

Then, the value of gESE
u (k) can be obtained as follows [Maha 06]:

gESE

u (k) = 2Hu(k) × r(k) − E{ςu(k)}
Var{ςu(k)} ∀u, k (1.54)

The ESE is summarized in algorithm 1.

Then, gESE
u (k) is updated as gDEC

u (k) and inserted in the DEC. The DEC provides

gDEC
u (k), this value is updated as gESE

u (k) and the ESE process is again performed.

During the final iteration the DECs produce hard decisions and the transmitted

Algorithm 1 ESE

Require: r(k), σ2
B, Hu(k), Iidma

Initialization step:

gESE
u (k) = 0 ∀u, k

Iterative process

for i = 1 to Iidma do

µu(k) = E{Su(k)} = tanh
(

gESE
u (k)

2

)

∀u, k

υu(k) = V ar{Su(k)} = 1 − (µu(k))2 ∀u, k

E{r(k)} =
∑U

u=1 Hu(k)µu(k) ∀u, k

V ar{r(k)} = σ2
B +

∑U
u=1(Hu(k))2υu(k) ∀u, k

E{ςu(k)} = E{r(k)} − Hu(k)µu(k) ∀u, k

V ar{ςu(k)} = V ar{r(k)} − (Hu(k))2υu(k) ∀u, k

gESE
u (k) = 2Hu(k) × r(k)−E{ςu(k)}

V ar{ςu(k)}
∀u, k

end for
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bits are estimated1.

The block scheme of an OFDM-IDMA uplink receiver is shown in figure 1.20.

It should be noted that again we considered a perfectly frequency synchronized.

However, this is a very strong hypothesis for a real wireless communication sys-

tem. The effects of the propagation channel on the OFDM-IDMA received signal

are the same as the ones presented for an OFDMA system in subsection 1.18.

Therefore, the estimation of the CFOs can be implemented as in an OFDMA sys-

tem, but not the CFO correction. In an OFDM-IDMA system, all the users use

all the subcarriers at the same time. Thus, the CFO correction of one user may

destroy the orthogonality of the other users. In addition the IDMA receiver needs

the a priori knowledge of the CIRs. Hence, a channel estimation is required.

gESE
1 (k)gESE
1 (k)

gESE
1 (k)

gESE
U (k)

gESE
U (k)

gDEC
1 (k)

gDEC
1 (k)

gDEC
U (k)

gDEC
U (k)CP-OFDM

demodulation

∏

u

∏−1
u

∏−1
u

∏

u

ESE

DEC

DEC

σ2
B HuR

r(k)

iterative IDMA receiver

user decoding 1st user

estimated

bits

Uth user

estimated

bits

Figure 1.20: OFDM-IDMA uplink receiver [Maha 06], where ESE is the elemen-

tary signal estimator and DEC is the a posteriori probability decoder

1In this PhD dissertation we consider a parallel processing of the users in the IDMA receiver.
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1.5 Conclusions

In this chapter, our purpose was to present the multicarrier high-data rate mo-

bile wireless systems. We recall various properties of the system such as: 1/ the

influence of the propagation channel leading to various kinds of channels (slow

or fast fading channel, flat-fading or frequency-selective channel), 2/ the various

multiple access techniques that have been derived: FDMA, TDMA, CDMA, SC-

FDMA, OFDMA and OFDM-IDMA.

Then, we focus our attention on two systems. We first present in detail the

OFDMA uplink transmitter and receiver, by giving the expression of the input

and the output of each block in the processing chain. We also look at the OFDM-

IDMA system and present the uplink receiver proposed in [Maha 06]

In both cases, we point out the importance of the estimation of the CFO and the

channel.

In chapter 2, we are going to propose several methods based on Kalman Filtering

and H∞ filtering to carry out the frequency synchronization and channel equal-

ization.

In chapter 3, we will propose some modifications of the conventional OFDM-

IDMA uplink receiver to counteract the effect of the multiple CFOs and the

channel in the received OFDM-IDMA signal.
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2.1 Introduction

2.1 Introduction

As mentioned in chapter 1, in OFDMA uplink systems, estimating CFO and

channel plays a key role. This chapter deals with the frequency synchronization

and the channel equalization, and presents our contributions in that field.

The chapter is organized as follows: a state of the art dedicated to the CFO

and channel estimation in OFDMA uplink systems is given. We first focus our

attention on the estimation of the CFO for systems with interleaved and gener-

alized CAS [More 04], [Zhao 06], [Jing 08]. The estimation can be done in the

frequency domain or in the time domain. Then, we present the existing methods

dealing with the joint estimation of the CFO and the channel [Pun 04a], [Pun 06],

[Sezg 08]. At that stage, we suggest a recursive estimation of the CFO and the

channel by using optimal filtering, i.e. Kalman filtering and H∞ filtering (and

their variants). These approaches are derived:

• in combination with an MMSE-SD to increase the data rate in the system;

• in combination with a statistical test, i.e. the BHT and the CUSUM test,

to design a robust CFO estimator that detects the beginning and the end

of the disturbances induced by another system.

2.2 State of the Art on the OFDMA Uplink Sys-

tems - Carrier Frequency Offset (CFO) and

Channel Estimation

In an OFDMA uplink system, the signal received at the BS is affected by sev-

eral CFOs and multipath channels. Indeed, the signal transmitted by each user

propagates through different propagation channels. Estimating/correcting the

CFO and the channel is necessary. More particularly, without CFO estima-

tions/corrections, orthogonality between subcarriers is no longer satisfied. It

results in ICI as well as MAI. These multiple frequency offsets make the CFO
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estimation more “complex” than the one in a downlink communication1.

The CFO estimation problem for OFDMA uplink transmissions using control

data2 has been recently addressed in several papers. Thus, in [More 07], Morelli

et al. present a tutorial that illustrates various schemes for uplink CFO estima-

tion among different CAS.

More specifically, when using subband CAS (See chapter 1 in section 1.4.2.1),

CFO can be estimated by inserting unused subcarriers among subchannels to

provide frequency guard intervals as shown in figure 2.1.
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Figure 2.1: OFDMA spectrum when using subband CAS

If the CFOs are smaller than the guard intervals, the received signals can be sepa-

rated at the BS by passing through a bank of digital band-pass filters (BPFs), each

one selecting a subband. Therefore, CFO-estimation methods used in OFDM or

OFDMA downlink transmission can be used. For example, the method proposed

in [Moos 94] to estimate the CFO in an OFDM transmission can be performed.

1Indeed, in an OFDMA downlink communication, the receiver is the user. Thus, one user

has to estimate only a single CFO and a single channel. Then, the CFO estimation can be

performed by using the methods proposed for OFDM single-user communications [Moos 94],

[VdBe 99].
2The control data are composed by known training sequences called “preambles” and/or

pilot subcarriers.
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Frequency Offset (CFO) and Channel Estimation

The CFO is estimated by calculating a phase shift in the frequency domain be-

tween two successive identical OFDM symbols. The repetitive OFDM symbol

remains identical after passing through the channel except for a phase shift pro-

duced by the CFO. In [Huan 10a], the authors use control data having a tile

structure in the frequency domain. Then, a high-resolution subspace method al-

lows the CFO to be estimated. In [VdBe 99], Van de Beek et al. take advantage

of the CP and estimate the CFOs by calculating the phase shifts in the time

domain between the Ng last samples of the received OFDMA symbols and the

CP of each user.

In OFDMA uplink systems with interleaved or generalized CAS, it is impossible

to take advantage of the frequency guard intervals. In those systems the CFO

estimation is a challenging task. When using control data, several methods have

been proposed. In [More 04], the CFO is estimated in the ML sense. However,

it requires an exhaustive grid search over all the possible values of the CFO,

leading to a high computational cost. For that reason, Morelli also proposes a

reduced-complexity frequency estimator, that compares the phase shifts of sev-

eral identical received OFDMA symbols in the frequency domain. Nevertheless,

the author assumes that all the active users, except the first one, are already

synchronized in frequency. In [Zhao 06], Zhao et al. use an EKF to estimate the

CFO. In addition, Jing et al. propose an extended H∞ filter to combat intercar-

rier interference for an OFDM system [Jing 08]. However, in both approaches,

the channels are preliminary estimated and this assumption cannot be necessar-

ily satisfied in real cases. Indeed, during the uplink CFO-synchronization stage,

channel state information1 (CSI) is not available, and hence has to be estimated

either jointly with the CFO or after CFO compensation.

In order to correct the MAI, the CFO has to be compensated. In the single-user

detector method, shown in figure 2.2, the CFOs are compensated by multiplying

the complex envelope of the signal before the CP-OFDMA demodulation at the

receiver. However, the number of FFTs increases linearly with the number of

users as well as the computational complexity of the receiver. As an alternative,

new correction methods have been proposed. More particularly in [Dai 07], the

1The CSI refers to known channel properties of a communication link. It is usually associ-

ated to the CIR.
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Figure 2.2: Single-user detector

CFO is compensated by mitigating the effects of the major lobes and the side

lobes of the frequency response of the signals received from each user. The CFO

estimation can be obtained by calculating the phase shifts of two identical re-

ceived OFDMA symbols in the time domain. In [Choi 00], CFO compensation is

based on a circular convolution after the CP-OFDMA demodulation1, as shown

in figure 2.3. The authors suggest using the method presented in [Moos 94] to

estimate the CFOs. However, both methods only work for subband CAS. Con-

sequently, in [Huan 05], the authors extend the concept proposed in [Choi 00]

and use it in a system with interleaved or generalized CAS. In that case, the

FFT

circular
convolution

circular

convolution

BPF

Q1

BPF

QU

BPF

Q1

BPF

QU

R

r1

rU

Ẑ1

ẐU

to the 1st EQU

to the Uth EQU

ǫ̂1

ǫ̂U
r

Figure 2.3: CFO correction by means of a circular convolution after the FFT

1Due to the CP, the received signal without CFO correction after the CP-OFDMA demod-

ulation can be expressed as: r =
∑U

u=1 FEu ⊗ Zu + b, where Zu = FhuXu, Eu is the CFO

matrix and ⊗ represents a circular convolution.
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Algorithm 2 Circular convolution + IC [Choi 00]

Require: r =
∑U

u=1 FEu ⊗ Zu + b, Zu = FhuXu, Êu, ⊗: circular convolution

Initialization step:

Ẑu = Qu{Qur ⊗ FÊH
u }

Circular convolution + IC step:

for i = 1 to Imax do

Z̃u = r −∑U
u′=1

u′ 6=u

Ẑu ⊗ FÊu and

Ẑu = Qu{QuZ̃u ⊗ FÊH
u }

end for

CFOs are corrected via a circular convolution after the CP-OFDMA demodula-

tion, but an iterative interference-cancellation (IC) step is required, as shown in

algorithm 2. The authors suggest again using the method presented in [Moos 94].

In [Cao 04a], the CFO is corrected by means of a linear detection, whereas the

CFO is estimated using a high-resolution subspace method, i.e. the multiple sig-

nal classification (MUSIC) method [Ther 92]. More recently, Hou et al. have

proposed a minimum mean square error successive detector (MMSE-SD) to sup-

press the MAI, but the CFO is assumed to be known [Hou 08].

In the above approaches, channel estimation is not included. The joint esti-

mation of the CFO and the channel has been also investigated. In [Pun 04a] and

[Pun 06], the authors study how to obtain the joint ML estimations of the chan-

nels and the CFOs of multiple users. Thus in [Pun 04a], a conventional EM is

first proposed: during the E-step, the received signals transmitted by each user,

namely the “complete data”, are estimated. During the M-step, all the CFOs and

the channels are jointly estimated by using these complete data. To simplify the

optimization issue, the value of the channel is replaced by its expression depend-

ing on the CFO in the criterion to be minimized. Therefore, only the CFO of

each user has to be estimated. Even if the criterion is explicitly given, the authors

do not mention the estimation method they used. For instance, exhaustive grid

search could be considered as suggested by the same authors in [Pun 04b]. To

reduce the computational cost, the authors in [Pun 04a] use the SAGE algorithm.
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In that case, instead of simultaneously estimating every-user parameters, one it-

eration of the EM algorithm is dedicated to one user. Instead of addressing a

multidimensional optimization issue, the so-called alternating projection estima-

tor is used in [Pun 06]. This method consists in iteratively estimating the CFO

of one user, by means of an exhaustive grid search over the possible range of the

CFO value and by setting the other CFOs to their last updated values. In [Fu 06],

Fu et al. propose two iterative estimation approaches using the SAGE method.

In addition, in [Saem 07] Saemi et al. propose two EM-based algorithms. The

first one estimate the CFO without the CSI whereas the second one estimate

jointly the CFO and the channel. Nevertheless, the EM-based algorithms do not

necessarily converge to the global extremum. Like any EM algorithm, an ini-

tialization step is required. Another drawback of the above methods is the high

computational cost due to the iterative estimation and the exhaustive grid search.

For a large number of subcarriers, the EM-based algorithms are impractical. For

that reason, Sezginer et al. [Sezg 08] proposed an iterative suboptimal method.

It is based on an approximation of an ML estimator to reduce the computational

complexity of the EM-based algorithms. However, it is still based on an exhaus-

tive grid search and an iterative architecture.

To reduce the amount of control data, alternative estimation techniques have

been proposed. If a subband CAS OFDMA uplink system is considered, the

method presented in [Cibl 04] can be considered. Thus, Ciblat et al. have devel-

oped a blind1 CFO estimation for an OFDM single-user system based on offset

quadrature amplitude modulation (OQAM). The CFO is estimated by searching

the maximum of the periodogram of the received signal. Nevertheless, this is a

single-parameter estimation method and cannot be implemented for interleaved

and/or generalized CAS. For that reason, in [Cao 04b], the authors propose a

subspace method based blind CFO estimation algorithm for an interleaved CAS

OFDMA uplink system. It consists of a high-resolution signal-processing tech-

nique to estimate the CFO without control data. Nevertheless, more subchannels

than users are required. In addition when the values of the different CFOs are

close one another, the grid search approach leads to a suboptimal estimation. In

1A blind CFO estimation is an estimation of the CFO that does not require control data.
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[Mova 08], a blind method to estimate CFOs based on a linear precoder is pro-

posed. Using two OFDMA symbols, the idea is to find a time correlation using

a precoder which gives a second-order moment based CFO estimation for each

user.

Several approaches using ML estimation of the CFO and channel estimation in

multicarrier systems have been proposed. However, only few approaches are

based on optimal recursive filtering to perform the CFO and channel estimation

in OFDMA uplink systems. One feature is that this multiparameter estimation

solution can be implemented recursively. In particular, each updated estimate

is computed from the previous estimate and the current observation. Therefore,

only the previous estimation has to be stored. The optimal filtering is hence

computationally more efficient than algorithms that compute the estimation us-

ing the entire past observed data at each step of the estimation process.

In the following, different optimal filtering techniques aiming at estimating the

CFO and the channel are proposed for conventional and CR environments.

2.3 A Joint CFO/Channel Estimator for OFDMA

Systems

Due to the propagation channels and the radio frequency (RF) effects, the uplink

signals at the BS are plagued by synchronization and estimation errors. There-

fore at the BS, synchronization and equalization process has to be done. These

processes usually require control data. Commonly, the synchronization process is

performed before the CIR estimation. However, if a time-synchronized OFDMA

uplink system is considered, the CFO and the channel can be jointly estimated.

Then, for a time-synchronized system the nth sample of the received OFDMA

symbol at the BS after CP removing is:

R(n) = ej2π ǫun
K

U∑

u=1

Lu−1∑

l=0

hu(l)Xu(n − l) + B(n) 0 ≤ n ≤ K − 1 (2.1)
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Then, the received OFDMA symbol can be expressed as follows:

R
∆
= [R(0), R(1), . . . , R(n), . . . , R(K − 1)]T

=
U∑

u=1

EuhuXu
︸ ︷︷ ︸

Ru

+B
(2.2)

where Eu = diag
{[

1, ej2πǫu/K , . . . , ej2π(K−1)ǫu/K
]}

(See chapter 1 in section 1.4.2.2).

In order to restore orthogonality among each user subcarrier, both the CFO-

synchronization error vector ǫ and the CSI vector h have to be estimated at the

BS.

Let us define the vector ǫ of size U and the vector h of size L =
∑U

u=1 Lu by

storing the CFOs and the CSIs of the U users in the system as follows:

ǫ = [ǫ1, ǫ2, . . . , ǫu, . . . , ǫU ] (2.3)

h = [h1, h2, . . . , hu, . . . , hU ] (2.4)

where hu = [hu(0), hu(1), . . . , hu(l), . . . , h(Lu − 1)].

In this section, a joint estimation of the CFOs and the CSIs using Kalman and H∞

filtering is proposed [Pove 10]. The Kalman filter requires an exact and accurate

system model as well as perfect knowledge of the noise statistics. In contrast,

the H∞ filtering is more robust against model uncertainty and does not need

any a priori knowledge of the noise statistics. It should be noted that the work

presented in this section is complementary to the study done in [Kang 07], that

presents a joint CFO/channel estimation in a single-user scenario using an UKF.

As both Kalman and the H∞ filtering are based on a state-space representation

of the system, the next subsection briefly recalls the equation updating the state

vector and the observation equation.

2.3.1 State-Space Representation of the System

The state-space representation of the system (2.1)-(2.2) is the representation of

what happens during the OFDMA frame1.

1The OFDMA frame has been introduced in chapter 1 in section 1.4.2.1; it is a block

composed of several OFDMA symbols.
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Let us define the vector x(n) of size U = U + 2L, which is the state vector of the

system (2.1)-(2.2):

x(n) =
[

ǫ(n) Re {h(n)} Im {h(n)}
]T

(2.5)

In order to improve the performance of the proposed algorithm [Kang 07], a

separate estimation of the real and the imaginary parts of the state-vector is

proposed1. Let Y be the 2 × K observation matrix that stores the real and the

imaginary parts of the received OFDMA symbol2 R:

Y(ǫ, h) = C(ǫ, h) + B

= [Y(0, ǫ, h), Y(1, ǫ, h), . . . , Y(n, ǫ, h), . . . , Y(K − 1, ǫ, h)]
(2.6)

where C(ǫ, h) is a 2 × K matrix that stores the real and the imaginary parts of

the contributions of alls users to the received OFDMA symbol:

C(ǫ, h) =






Re
{
∑U

u=1 Ru

}T

Im
{
∑U

u=1 Ru

}T






= [C(0, ǫ, h), C(1, ǫ, h), . . . , C(n, ǫ, h), . . . , C(K − 1, ǫ, h)]

(2.7)

and

B =

[

Re{B(n)}T

Im{B(n)}T

]

= [B(0),B(1), . . . ,B(K − 1)] (2.8)

B(n) is an AWGN vector with zero-mean and covariance matrix σB

2
I2.

Now, let us introduce the state-space representation of the system (2.1)-(2.2) to

estimate the CFO and the channel:

State equation:

x(n) = x(n − 1) + w(n) ∀ n ∈ [0, K − 1] (2.9)

Measurement equation:

Y(n) = C(n, x(n)) + B(n) ∀ n ∈ [0, K − 1] (2.10)

1As an optimal filtering estimation is proposed, one solution could be to use a complex

Kalman filter [Dash 00] or a complex H∞ filter [Nish 99]. However, in order to guarantee the

stability of the filter [Dini 10], we have chosen to separate the estimation of the real and the

imaginary parts.
2C(ǫ, h) indicates that the matrix C depends on these vectors.
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where w(n) is an AWGN matrix with zero-mean and covariance matrix σ2
wIU. It

should be noted that σ2
w is very low and can even be equal to 0. In this latter

case, the CFO and the channel are assumed to be constant during one OFDMA

symbol.

2.3.2 Kalman Filtering in the Non-Linear Case

When dealing with the non-linear state-space representation (2.9)-(2.10) of the

system and if there is no model noise in the state-equation, methods such as the

linearized recursive least squares (RLS) can be considered [Hayk 96]. More gen-

erally, if there is a model noise in equation (2.9) the EKF [Hayk 96] presented in

appendix D can be used. However, due to the first-order approximation, the EKF

may sometimes diverge when evaluating the mean and the covariance matrix of

the random variable that undergoes the non-linear transform. To address this

approximation issue, a second-order linearization can be considered and leads to

the SOEKF [Bar 01] presented as well in appendix D. In that case, the Jacobian

matrix must be computed for the first-order linearization, but also the Hessian

matrix for the second-order linearization. As an alternative, the IEKF presented

in appendix D linearizes the measurement model around the updated state, in-

stead of the predicted state. At each time step, this linearization around the

estimate can be done several times (e.g. 2 to 5 times). It should be noted that in

[Grew 10], another kind of EKF is presented to address numerical issues of the

EKF. However, these derivations may be unstable and do not necessarily guaran-

tee the convergence of the filter. For that reason, the SPKF presented in appendix

E, namely the UKF or the CDKF, are considered in this thesis [VdMe 04a]. The

UKF is based on the unscented transformation [Wan 01], whereas the CDKF is

based on the second-order Sterling polynomial [Ito 00]. The main advantages of

the SPKF over the EKF is that they do not require calculations of Jacobians or

Hessians. See table 2.1.

In this section, these five types of Kalman filters (KFs) are used to recursively

estimate the state-vector.
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Non-linear Estimation

No model noise Model noise

Linearized RLS Kalman filter

Linearization Gaussian approximation

EKF UKF

CDKF






SPKF

SOEKF

IEKF

Table 2.1: Gaussian non-linear estimation methods

2.3.3 H∞ Filtering in the Non-Linear Case

In the above approaches, a priori knowledge on the model noise w and the mea-

surement noise B characteristics is required. To relax the assumption on the

model noise and additive measurement noise, we suggest investigating the rele-

vance of the H∞ filter. H∞ filter is known to be more robust to uncertainties

than Kalman filtering-based estimation [Hass 99]. The H∞ theory purpose is to

minimize the worst possible effects of the disturbances on the estimation error.

No statistical assumptions have to be made on the model and the measurement

noises. They are just assumed to have finite energies.

Let us introduce a third state-space equation to focus on a linear combination of

the state-vector components:

z(n) = Lx(n) (2.11)

where L = IU. The reader is referred to appendix B, where the state-space

representation is linear and to appendix F, where the state-space representation

is non-linear.

In this section, two types of H∞ filters are proposed to estimate the state vector

in a recursive way:

• like the EKF, the“extended H∞ filter” consists of a first-order expansion of

the state-space functions around the last available estimation of the state

vector [Burl 98];

• the unscented H∞ filter [Li 10], which is based on the unscented transfor-

mation embedded into the “extended H∞ filter” architecture.
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The reader is referred to table 2.2. In addition, appendix C deals with a compar-

ison between the equations that define Kalman filtering and H∞ filtering.

No linearization
No statistical

assumptions

EKF x x

SPKF X x

Extended
x X

H∞ filter

Unscented
X X

H∞ filter

Table 2.2: The KF vs the H∞ filter in a non-linear case, Xrepresents a fulfilled

option whereas x represents a not fulfilled option

In the following subsection, simulation results show the efficiency of the proposed

optimal filtering algorithms.

2.3.4 Simulation Results

In the following, a comparative study is carried out between:

• the EKF, the SOEKF, the IEKF, presented in appendix D;

• the UKF, the CDKF, presented in appendix E;

• the “extended H∞ filter”, the “unscented H∞ filter” presented in appendix

F;

• and the methods presented in [Pun 04a] and [Pun 06] where a grid search

approach is used to update the CFO estimation.

Simulation protocol:

An OFDMA IEEE 802.16 WirelessMANTM uplink system composed of U = 4

users sharing K = 128 subcarriers and with a cyclic prefix Ng = K/8 ≥ max
u

(Lu)

is considered. A transmission over a Rayleigh slow-fading frequency-selective
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channel composed of Lu = 3 ∀u multipaths is supposed. BPSK is used to modu-

late the information bits. The carrier frequency is at fc = 2.6GHz and the band-

width is set to W = 20MHz. The users’ normalized CFO errors are randomly and

uniformly generated in the interval [-1,1]. Then, let us define SNR= 10log( σ2
u

σ2
B

),

where σ2
u is the mean power of the received signal from the uth user.

When using H∞ filtering: Ξ = 102, V =
σ2

B

2
I2 and W = IUσ2

w. One assumes

that there is a state noise w(n) with very small variance, e.g. σ2
w = 10−3. For

the CFO, the initialization parameters of the algorithm is ǫ̂u(0) = 0 ∀u.

The grid search algorithms proposed in [Pun 04a] and [Pun 06] are based on

Iem = 20 iterations and a grid search precision equal to 10−4; this means that

b = 2
10−4 + 1 = 20001 values of CFO are studied in the grid search algorithm.

The estimations are obtained by using control data of one OFDMA symbol.

2.3.4.1 Estimation Performance

We focus our attention on the first user in the system. First of all, our approaches

provide similar results when UKF and CDKF are used. Therefore, in the follow-

ing, we make reference to SPKF filtering performance.

Figure 2.4 and 2.5 show the results in terms of CFO and channel MMSE consid-

ering a perfect knowledge of the noise statistics. When the noise characteristics

are available, the EKF provides quite similar results in comparison with the “ex-

tended H∞ filter” and there is no real difference between the SPKF and the

“unscented H∞ filter”. For that reason, in figure 2.4 and 2.5, we only show the

results of the Kalman approaches. In addition, the algorithms in [Pun 04a] and

[Pun 06] provide similar results after a given number of iterations. Thus, figure

2.4 and 2.5 show only the performance of the EM-based algorithm presented in

[Pun 04a].

The IEKF gives the best estimation performance. However, due to the calcula-

tion of the Jacobian matrix at each iteration, the computational complexity is

the highest among the proposed approaches. The SPKF algorithms give better

CFO and channel estimations than the SOEKF and the EKF.
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Figure 2.4: CFO estimation performance for a joint channel/CFO estimation

when the noise statistics are available
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Figure 2.5: Channel estimation performance for a joint channel/CFO estimation

when the noise statistics are available

Figure 2.6 shows that the IEKF converges faster than the other Kalman ap-

proaches. In addition, the SPKF seem to require less observations than the EKF

60



2.3 A Joint CFO/Channel Estimator for OFDMA Systems

20 40 60 80 100 120

−0.25

−0.2

−0.15

−0.1

−0.05

0

C
F
O

va
lu

e

Sample Index

SNR = 10 dB

EKF

SOEKF

IEKF

CFO real value

SPKF

Figure 2.6: Recursive CFO estimation for a joint CFO/channel estimation using

optimal filtering, when the noise statistics are available

and the SOEKF to estimate the CFOs.

Let us now look at the H∞ based approaches. Figure 2.7 shows the robustness of

the H∞ filtering to uncertainties. For an error of 5dB over the variance, the H∞

filtering approaches converge faster than the Kalman ones. However, the com-

putational complexity of the H∞ filtering approaches is higher than the SPKF.

It should be noted that when using the extended H∞ and the unscented H∞ ap-

proaches, the choice of the noise attenuation level Ξ plays a key role. If it is set

to a high value, there is no real difference between the Kalman algorithm and

the H∞ based approach, whereas no H∞ solution may exist if Ξ is set to a small

value.

Based on the above considerations, we think that among our algorithms the

SPKF gives the best compromise in terms of estimation performance, computa-

tional complexity and number of parameters to be a priori tuned.

The grid search algorithms proposed in [Pun 04a] and [Pun 06] provide better

performance in terms of MMSE. Nevertheless, the estimation error of the SPKF

is small enough to guarantee bit error rates (BERs) that are similar to the ones

obtained when the grid search algorithms are used, as shown in table 2.3.
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Figure 2.7: Comparison between the Kalman filtering approaches and the H∞

filtering approaches in terms of convergence speed, when the noise statistics are

not available

SNR (dB) theoretical BER BER (grid search) BER (SPKF)

0 1.464 × 10−1 1.469 × 10−1 1.584 × 10−1

5 6.418 × 10−2 6.452 × 10−2 6.681 × 10−2

10 2.327 × 10−2 2.361 × 10−2 2.395 × 10−2

Table 2.3: BER performance when a joint channel/CFO estimation is considered

2.3.4.2 Computational Complexity

One of the goals in the design of wireless communication systems is to reduce the

energy consumption of the system. In current wireless communication systems,

only a few Go/s are dedicated to the channel estimation and the synchroniza-

tion. So, in the following let us have a look at the computational cost of the EM

algorithm and the SPKF algorithm. These approaches provide similar results in

terms of BER, but the EM-based algorithm have a higher computational com-

plexity due to the exhaustive grid search over the possible range of CFOs and the

iterative estimation.

Table 2.4 shows the number of arithmetic operations performed by the EM; N ob
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denotes the number of observations for the algorithms and it is set to N ob = K.

The computational cost of the EM approach depends on the number of Iem it-

erations and on the number of b tested values. The M-step is based on the

inversions of U matrices of size Lu × Lu. In addition, the decision test has to be

done to decide which is the best value of the CFO. Table 2.5 shows the number

EM algorithm

E-step

additions and
IemNobU + IemU(2Lu + 6) 1.1200 × 104

subtractions

multiplications
IemNobU + IemU(U + 2Lu) 1.1040 × 104

and divisions

M-Step

add./sub. for
IembN obULu + IembULu(1 + Lu) − IembU 6.2271 × 107

the grid search

mult./div. for IembUNob(3ULu + Lu)
8.0040 × 107

the grid search + IembU(L2
u + 15U + 2Lu + 1)

other
IemN obULu + IemUL2

u 1.1366 × 106

add./sub.

other
IemN obU(3ULu + Lu) + IemU(L2

u + 15U + Lu) 3.9329 × 106

mult./div.

Total arithmetic operations 1.4740 × 108

Table 2.4: Number of arithmetic operations performed by the EM joint chan-

nel/CFO estimator, 20001 tested CFO values and 20 iterations.

of arithmetic operations performed by the SPKF. The first step of the algorithm,

corresponding to the selection of the sigma points requires the Cholesky decom-

position1 of a matrix of size U × U. As the observation vector length is equal to

2, the measurement update also requires the inversion of a 2 × 2 matrix.

Table 2.6 shows the number of Giga-operations per second (Go/s) performed by

the EM for different grid search precisions.

Table 2.7 shows the number of Go/s for different numbers of users in the system

with a channel composed of 3 multi-paths. In addition, table 2.7 shows the num-

ber of Go/s for different number of channel multipaths with 4 users in the system.

1When using the SPKF and by considering U the length of the state vector, a U×U Cholesky

decomposition is necessary to obtain the “square root” of the error covariance matrix.
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SPKF algorithm

step 1: calculation of the sigma points

additions and
2N obU2(4L2

u + 4Lu + 1) 2.0070 × 105

subtractions

multiplications
2N obU2(4L2

u + 4Lu + 1) 2.0070 × 105

and divisions

step 2: estimation update

additions and 2N obU(8U2L3
u + 12U2L2

u + 6U2Lu
6.2290 × 106

subtractions 12UL2
u + U2 + 12ULu + 3U + 2Lu +1)

multiplications N obU(16U2L3
u + 24U2L2

u + 12U2Lu
6.1286 × 106

and divisions 20UL2
u + 2U2 + 20ULu + 5U + 4Lu + 2)

step 3: measurement update

additions and N obU(44ULu + 19U + 13)
1.8348 × 105

subtractions +N obU(28UL2
u + 96Lu)

multiplications 2N obU(12ULu + 7U +27) + 2N ob

2.9651 × 105

and divisions +2N obU(4UL2
u + 50Lu)

Total arithmetic operations 1.3239 × 107

Table 2.5: Number of arithmetic operations performed by the SPKF joint chan-

nel/CFO estimator

The computational complexity of the EM increases faster when the number of

users (or the number of channel multipaths) increases. Indeed the EM-based al-

gorithms work in blocks in an iterative way whereas the SPKF is recursive.

It is clearly seen by the results, that the computational complexity of the EM

is higher than the one of the SPKF. When 4 users in the system and a channel

composed of 3 multipaths are considered, the SPKF algorithm requires only 9%

of the number of operations required by the EM.

The approach presented in [Pun 06] required less iterations than the one pro-

posed in [Pun 04a]. In addition, an improvement to those iterative architectures

has been proposed [Sezg 08]. Here, the authors propose to reduce the number

of the iterations and the complexity of the matrix inversions. However, if only

one iteration is considered using a grid search precision of 10−4, the grid search

architecture required 7.1378×107 Go/s, the value is still higher than the one pre-

sented in table 2.5. Due to the grid search, the above approaches implementation

is relatively difficult in real environments;
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grid search precision b Go/s

10−1 21 0.0066

10−2 201 0.0194

10−3 2001 0.1474

10−4 20001 1.3239

Table 2.6: Number of Go/s performed by the EM joint channel/CFO estimator

for different grid search precisions

4 users in the system 3 multi-paths

Multipaths Go/s(EM) Go/s(SPKF) Number of users Go/s(EM) Go/s(SPKF)

1 0.5349 0.0130 2 0.6751 0.0192

2 0.9780 0.0516 3 1.0417 0.0588

3 1.4276 0.1324 4 1.4276 0.1324

4 1.8835 0.2712 5 1.8328 0.2505

5 2.3459 0.4838 6 2.2573 0.4238

6 2.8147 0.7859 7 2.7011 0.6626

7 3.2899 1.1931 8 3.1643 0.9777

8 3.7715 1.7213 9 3.6468 1.3794

9 4.2596 2.3861 10 4.1486 1.8784

10 4.7540 3.2033 11 4.6698 2.4852

11 5.2549 4.1885 12 5.2102 3.2103

Table 2.7: Number of Go/s performed by the EM and the SPKF joint chan-

nel/CFO estimators

2.3.5 Conclusions

The architectures proposed in this section require control data to perform the

estimation, but they do not need an initialization step. The robustness to un-

certainties of the H∞ filtering has been confirmed, but the selection of the noise

attenuation level remains quite difficult. When the noise characteristics are avail-

able, the best estimation performance have been obtained by the IEKF among

the proposed estimators. However, the computational complexity is the high-

est among the proposed algorithms. SPKF gives the best compromise between

computational complexity and estimation performance. They have lower compu-

tational cost than the grid search methods. This advantage is crucial, because

one of the goals in the design of wireless systems is to reduce the energy con-
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sumption of the system. In current wireless communication systems, only a few

Go/s are dedicated to the channel estimation and the synchronization. These

proposed approaches are completely applicable to practical environments, unlike

the EM-based methods.

In the next subsection, to reduce the amount of control data in the transmitted

signal, we propose to combine the optimal filtering techniques with the so-called

MMSE-SD in an iterative way.

2.4 An OFDMA Non-Pilot Aided Iterative CFO

Estimator

As an alternative to this classic scheme, shown in figure 2.8 and in order to reduce

the amount of control data, a non-pilot aided estimator based on an iterative

architecture [Pove 11c] is proposed in this section.

In an OFDMA transmission, the OFDMA frame duration may be higher than

the coherence time Tc of the channel. In this case, the CSIs need to be updated

by using pilot subcarriers. In this section, we suggest using a shorter OFDMA

frame so that the CSIs do not change. The subcarriers are no longer necessary

to update the CSI and hence they can be removed. The data rate is increased,

but the CFO may vary from one symbol to another. It should be noted that the

preamble is kept in order to perform the time synchronization, to estimate the

 

Tc: coherence time of the channel

Tofdma: time duration of the OFDMA frame

known training sequence

2ndOFDMA Symbol

to be retrieved

1stOFDMA Symbol

Tofdma << Tc

: data sub-carriers

Information

time (s)

(M − 1)thOFDMA Symbol M thOFDMA Symbol

Fourier transform of the
pthOFDMA symbol

: pilot sub-carriers

frequency (Hz)

3rdOFDMA Symbol

Figure 2.8: Example of an OFDMA frame composed of M OFDMA symbols

with a preamble composed of two OFDMA symbols and a determined number of

pilot subcarriers
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CSI for the whole frame and to provide an initial estimation of the CFO. See

figure 2.9.

2.4.1 Problem Formulation

 

Tc: coherence time of the channel

Tofdma: time duration of the OFDMA frame

known training sequence

frequency (Hz)

: data sub-carriers

Fourier transform of the
pth OFDMA symbol

R(M − 2) R(M − 1)R(2)2ndOFDMA Symbol1stOFDMA Symbol

Tofdma << Tc

time (s)

to be retrieved

Information

Figure 2.9: Example of an OFDMA frame composed of M OFDMA symbols

with a preamble composed of two OFDMA symbols and no pilot subcarriers, where

R is the received OFDMA symbol

The idea of the proposed receiver is to correct the MAI and to estimate the

signals sent from all users in the system by using an MMSE-SD. These estimated

signals called the “MMSE-SD preambles” play the role of the preambles and

are used to estimate the CFOs by means of the optimal filter. The iterative

architecture is shown in figure 2.10.

The frequency synchronization in an uplink communication can be seen as a

multiparameter estimation problem. A solution is to distinguish one user from

the others before starting the synchronization process. After the estimation of the

U “MMSE-SD preambles”, each one is inserted in U optimal filtering processes,

i.e. U Kalman filters or U H∞ filters. See figure 2.11. Finally, the CFOs between

the BS and each user are estimated independently, thanks to the optimal filter

and an additional MAI cancellation process.
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Figure 2.10: Proposed OFDMA non-pilot aided iterative receiver using optimal

filtering

2.4.2 User Detection - The Minimum Mean Square Error

Successive Detector (MMSE-SD)

The first step of the iterative architecture is to estimate the preambles by using

the MMSE-SD. According to [Hou 08], the MMSE-SD is robust against near-

far effect1, produced by the strong MAI. These phenomena are induced by the

difference that may exist between two users in terms of the propagation loss.

Instead of a joint multiuser decoding, a combination between an MMSE pre-

detection scheme with an ordered successive detection is proposed. The detection

of the transmitted OFDMA signal components operates in two major steps:

• interference cancellation (IC): during this step, the previous ”detected”

OFDMA signal components are subtracted out of the received signal. In-

deed, let Ŝũ,i be the estimation of the signal sent by the ũth user at the ith

1The near-far effect is a condition in which a strong power received signal does not allow

the receiver to detect a weak power received signal.
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Figure 2.11: Iterative MMSE-SD using a Kalman filtering based estimator and

a MAI suppression for BPSK modulation

iteration of the MMSE-SD, where 1 ≤ i ≤ Isd and Isd denotes the max-

imum iteration number. The user’s decoding order is denoted as ũ where

ũ ∈ {1, . . . , U}; when ũ = 1, it is associated with the maximum signal to

interference-plus-noise ratio1 (SINR) among the users whereas ũ = U rep-

resents the user with the lowest SINR. In addition the so-called (ũ + 1)th

order MMSE-SD residual at the ith iteration Yũ+1,i ∀ũ 6= 1 is the differ-

ence between the received signal R and the components transmitted by the

detected users2 (namely those corresponding to the ũ highest SINRs) and

Y1,i = R ∀i. See figure 2.11.

The IC steps can be summarized as follows:

Yũ+1,i = Yũ,i − Ĝũ,iŜũ,i (2.12)

= R −
ũ∑

l=1

Ĝl,iŜl,i (2.13)

with Ĝũ,i =

{ ∑U
ũ=1 Êũ,iHũQũ if ũ = 1

Ĝũ−1,i (IK − Qũ−1) if 2 ≤ ũ ≤ U
(2.14)

1 As the BS calculates the different SINRs, the signal can be decoded in an ordered way.
2Given (1.21), (1.22) and (1.23), the received OFDMA symbol can be expressed as

R =
∑U

u=1 GuSu + B, where Gu = EuFHHuQu, See chapter 1 in section 1.4.2.2.
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where Hũ = FHHũ, Hũ is the channel frequency response matrix associated

to the ũth user1, Qũ is the CAS matrix associated to the ũth user defined in

(1.23), and Ŝũ,i is the vector at the ith iteration that contains the estimated

symbols sent by the ũth user:

Ŝũ,i =
[

Ŝũ,i(0), Ŝũ,i(1), . . . , Ŝũ,i(k), . . . , Ŝũ,i(K − 1)
]

(2.15)

Êũ,i = diag
{[

1, ej2πǫ̂ũ,i−1/K , . . . , ej2π(K−1)ǫ̂ũ,i−1/K
]}

and ǫ̂ũ,i is the estimation

of the CFO associated with the ũth user at the ith iteration. A new iteration

begins when all the users have been processed and when the estimation ǫ̂ũ,i,

using the recursive estimator approach proposed in subsection 2.4.3, has

been done.

• interference suppression (IS): this step aims at removing the interference

stemming from the as-yet undecoded components. The purpose of this step

is hence to filter the ũth order MMSE-SD residual Yũ,i. By denoting σ2
s the

signal power allocated on each of the subcarriers, the suppression weight

matrix Wũ,i for the selected ũth user at the ith iteration satisfies [Hou 08]:

Wũ,i =

(

σ2
B

σ2
s

IK + GH
ũ,iGũ,i

)−1

GH
ũ,i (2.16)

Then, (2.16) is used to decode the selected user and to obtain the estimated

signal sent by uth user4.

Ŝũ,i(k) = argmin
Ωm∈Ω

‖Tũ,i(k) − Ωm‖2 (2.17)

with : Tũ,i = QũWũ,iR ũ = 1

Tũ,i = QũWũ,iYũ,i ũ > 1

Tũ,i = [Tũ,i(0), Tũ,i(1), . . . , Tũ,i(k), . . . , Tũ,i(K − 1)]

(2.18)

where Ω = {Ω1, Ω2, . . . Ωm, . . . ΩM} is the modulation constellation. At

that stage, (2.17) makes it possible to obtain the estimated signal of the

ũth user.

Âũ,i = HũQũŜũ,i =
[

Âũ,i(0), Âũ,i(1) . . . Âũ,i(K − 1)
]

(2.19)

1The matrix Hũ is assumed to be known.
4For example in BPSK modulation Ŝũ,i = sign (QũWũ,iYũ,i)
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In the next subsection, those estimated signals the “MMSE-SD preambles” are

used to estimate the CFO of each user.

2.4.3 CFO Estimation with the MMSE-SD Preambles

In order to restore orthogonality among each user subcarrier, the synchronization

error vector ǫ defined in (2.4) has to be estimated. Here, we suggest a recursive

method. However, each CFO ǫu is estimated independently. In each recursion,

the results of these independent estimations are used together for MAI cancella-

tion.

Let us introduce the state-space model to estimate the CFO, that is the rep-

resentation of what happens during one OFDMA symbol. It is defined by the

following state-space model:

State equation:

ǫũ,i(n) = ǫũ,i(n − 1) + w(n) (2.20)

Measurement equation:

R̂ũ,i(n) = Âũ,i(n)ej2π
ǫũ,in

K + Bũ(n)

= f(ǫũ,i(n)) + Bũ(n)
(2.21)

where R̂ũ,i(n) is the estimated received signal from each user (see subsection

2.4.3.1). In addition, w and Bũ are white zero-mean gaussian noises with variances

assumed to be σ2
w and σ2

ũ respectively. It should be noted that σ2
w is very low and

can even be equal to 0. In this latter case, the CFO is assumed to be constant

during one OFDMA symbol.

Let us introduce a third state-space equation that is used in the general case

for H∞ filtering to focus on a linear combination of the state-vector components.

Here, as the dimension of the state vector is equal to 1, one has:

zũ,i(n) = Lǫũ,i(n) (2.22)

where L is equal to 1.

As the state-space model is non-linear due to (2.21), the study of several kinds

of algorithms is proposed:
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• the EKF approaches including the EKF, the SOEKF and the IEKF, pre-

sented in appendix D,

• the SPKF, including the UKF and the CDKF, presented in appendix E,

• the “extended H∞ filter” and the “unscented H∞ filter” presented in ap-

pendix F.

2.4.3.1 Multiple Access Interference Cancellation Process

To improve the estimation, an MAI cancellation strategy as in [Zhao 06] is pro-

posed. The results from the (n−1)th recursion are used to estimate and eliminate

different users’ signals in the nth recursion.

MAI estimation: R̂
(est)
ũ,i (n) = Âũ,i(n)ej2πnǫ̂ũ,i(n−1)/K (2.23)

MAI correction: R̂ũ,i(n) = R(n) −
U∑

j=1,j 6=ũ

R̂
(est)
ũ,i (n) (2.24)

After some recursions, the algorithm makes its possible to estimate the value of

the uth user CFO.

2.4.4 Simulation Results

In the following, a comparative study is carried out. Three kinds of tests are

considered to evaluate the performance of the algorithms.

Simulation protocol: An OFDMA IEEE 802.16 WirelessMANTM uplink sys-

tem, which involves U = 4 users sharing K = 512 subcarriers and with a cyclic

prefix set to Ng = K/8 ≥ max
u

(Lu) is considered. The carrier frequency is at

fc = 2.6GHz and the bandwidth is set to W = 20MHz. Tofdma << Tc, where Tc

is the coherence time of the channel and Tofdma is the OFDMA frame duration.

A transmission over a Rayleigh slow-fading frequency-selective channel composed

of Lu = 3 ∀u multipaths is supposed. QPSK is used to modulate the information

bits. Then, Eb/No= 10log(σ2
u

σ2
ũ

) where σ2
u is the mean power of the received signal

from the ũth user.
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When using H∞ filtering: Ξ = 102, V = σ2
ũ and W = σ2

w. One assumes that

there is a state noise w(n) with very small variance, e.g. and σ2
w = 10−3. It is

assumed that the channel estimation and a CFO pre-estimation have been per-

formed using a preamble. The algorithm estimates the “MMSE-SD preambles”

of the 4 users, and then estimates the CFOs for each OFDMA symbol so that the

coherent detection can be robust against variations over all the OFDMA frame.
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Figure 2.12: CDKF based approach for CFO estimation with a known preamble

2.4.4.1 Test 1: Recursive Estimation Using Perfectly Estimated MMSE-

SD Preambles

In this first case, it is assumed that the MMSE-SD preambles have been perfectly

estimated at the receiver. The CFO estimation algorithms for users with different

CFO are tested. The users’ CFO estimation errors are considered fixed during

one OFDMA symbol. 500 montecarlo runs are performed.

Based on preliminary tests, it was noticed that the Kalman filtering approaches,

“the extended H∞ filter” and the “unscented H∞ filter” provide very similar

results. In the following, we choose the SPKF and the unscented H∞ filter to

perform the CFO estimation, in order to avoid the linearization step. Therefore,

in figure 2.12, we only show the results obtained when using a CDKF. According
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Figure 2.13: MMSE-SD combined with an UKF based approach for CFO esti-

mation

to figure 2.12, our approach makes it possible to accurately estimate the CFO

recursively. It should be noted that this is the recursive CFO estimation over

only one OFDMA symbol.

2.4.4.2 Test 2: Non-Pilot Aided Estimation

In this second case, the receiver estimates the MMSE-SD preambles. The simu-

lation results deal with the first user of the system. The users’ CFO errors vary

between the different OFDMA symbols (but they are considered fixed during one

OFDMA symbol). They are modeled as independent zero-mean Gaussian ran-

dom variables with a variance of σ2
cfo. Figure 2.13 shows the results in terms of

CFO estimation over one OFDMA symbol. The proposed algorithm provides an

estimation of the CFO in an iterative way. As expected, the first iteration leads

to poor performance, but iterating our approach especially up to 5 times leads to

good performance.

In figure 2.14, the performance of our algorithm in terms of BER are shown; the

estimation is done by using either the Kalman filtering with an error of 3 dB over

the variance or the H∞ filtering. In the following, we choose “the unscented H∞
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Figure 2.14: BER performance, uniformly distributed CFO, 5 iterations, when a

non-pilot aided estimation is considered

filter” to perform the CFO estimation, in order to avoid the linearization step. In

addition, we show the results when a single-user detector is used by considering

a perfectly estimated CFOs. According to figure 2.14, the results of the proposed

method are better after performing the fourth iteration. A gain of around 1 dB for

a BER of 10−2 is obtained when using the proposed method with the “unscented

H∞ filter” at the fifth iteration in comparison with the single-user detector. In

[Huan 05] and [Cao 04a], the algorithms tend to the theoretical value. However,

in [Huan 05] more subchannels than users are required. In addition, in [Cao 04a]

a training sequence is necessary.

In figure 2.15, the results in terms of MMSE are shown. Based on previous tests,

it was seen that the results in [Mova 08] are better than the results in [Cao 04b]

in terms of CFO estimation performance. So, we propose a comparative study

with the multiuser interference resilient (MUI) approach [Cao 04b]. Note that

the algorithm presented in [Cao 04b] needs two OFDMA symbols for the estima-

tion. A gain of 4 dB for an MMSE of 10−4 is obtained between the MUI method

and the proposed method at the third iteration when using a SPKF. In addition,

figure 2.16 compares the SPKF and the “unscented H∞ filter” in terms of con-

vergence speed, for a Eb/No= 10 dB, for different errors over the noise variance
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Figure 2.15: CFO estimation performance for a non-pilot aided CFO estimation

when using the SPKF and for different values of Ξ when using the H∞ filtering.

Firstly, one considers an error over the variance of 3dB and 5dB; secondly, no

error over the variance is assumed. It can be seen that the convergence speed of

the SPKF is affected by the variance noise error. For the lowest values of Ξ, the

convergence may be slightly faster. If the value of Ξ increases, the “unscented

H∞” filter performance tend to be the same as the SPKF ones.

2.4.4.3 Test 3: Influence of the CIR Estimations

In this third case, we propose to analyze the influence of the CSIs variations over

the receiver performance. The CFO estimation is performed by a SPKF, provided

that the noise characteristics are known. The simulation results are focused on

the first user of the system. It is assumed that the CSIs have small variations in

time over the OFDMA frame. ĥu denotes the estimated channel impulse response

for each user using the preamble and hũ is the value of the channel response for

each user. In a first test, the following normalized random error over each channel

is considered |ĥu − hũ| < ILu×110−2, where ILu×1 is a Lu × 1 vector composed of

ones. In the second test |ĥu − hũ| < ILu×110−1. The results obtained at the fifth

iteration for the different BER with a different error over the channels are shown
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in figure 2.17. One can notice that the performance of the architecture are not

really affected by small variations on the channel.
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Figure 2.16: Comparison between the SPKF and the “unscented H∞ filter” in

terms of convergence speed
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Figure 2.17: BER performance when the channel is estimated and a non-pilot

aided CFO estimation is considered

2.4.4.4 Computational Complexity

Now let us look at the complexity of the frequency synchronization scheme. Con-

cerning with the MMSE-SD step, at each iteration and for each user, the MMSE-

SD is based on the inversion of a matrix of size K × K in order to calculate the

suppression weight matrix Wũ,i. This matrix inversion requires O(K3) opera-

tions. Thus, the overall complexity of the MMSE-SD step is O(IsdUK3).

Then, concerning the estimation step, as the dimension of the state vector is equal

to 1, the optimal filtering step requires the computation of O(1) operations for

each user and for each iteration. Thus, the overall complexity of the estimation

step is O(IsdU).

Therefore, we can conclude that the overall complexity of the proposed iterative

architecture is O(IsdUK3).

2.4.5 Conclusions

The non-pilot aided MAI suppression scheme for an OFDMA uplink transmission

followed by the CFO estimation algorithm based on optimal filtering can estimate
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and detect each user’s CFO and frame respectively, with no need of pilot sub-

carriers. This leads to a maximum transmission data rate.

In addition, simulation results confirm that the proposed scheme can effectively

suppress the MAI caused by a relatively large CFO, sufficiently robust to CFO

variations. The decoding of OFDMA signal is an ordered serial processing that

combines interference suppression and interference cancellation techniques. The

iterative decoding applies simple hard interference cancellation techniques, result-

ing in moderate complexity. The CFO estimation performance of the different

approaches give quite similar results. On the one hand, one advantage of the

SPKF is that it does not need the calculations of Jacobians or Hessians. In those

cases, the computational complexity is lower. On the other hand, when using the

H∞ filter, no information about the noise statistics is required, but the selection

of the noise attenuation level may be a problem.

2.5 An OFDMA Robust CFO Estimator

The above algorithms provide accurate estimation as long as the received signal

is only disturbed by the propagation channel and an AWGN, whereas significant

degradations are expected in the presence of an NBI [Mare 06].

When CR systems are used, the PU has to be detected. When dealing with mul-

ticarrier transmissions and if the cognitive devices have no a priori information

about the PU signal, energy detection has been suggested as the spectrum sensing

technique [Ferr 10], [Quan 08], [Cabr 04]. Nevertheless, when an energy detector

is used, deep PU fading must be counteracted to guarantee the PU detection

[Cabr 04]. Otherwise, the PU signal may be disturbed by an undesirable NBI

caused by the CR that shares the same frequency band. This may lead to an

inaccurate estimation of the CFO and hence increases the BER. Therefore, NBI

has to be detected and taken into account to deduce the CFO.

The NBI detection has been widely studied [Broe 03], [Li 07]. In particular, the

approach proposed in [Li 07] consists of a repetitive pilot block in the time domain

to detect an NBI localized in time. Hence, this method cannot be used in the

presence of CFO. Since the two duplicated parts remain identical after passing

through the channel, their subtraction at the receiver provides the contribution
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of the noise-plus-interference, which is then easily detected.

To our knowledge, the CFO estimation in presence of an NBI has not been widely

addressed. In [More 08], Morelli et al. propose a novel scheme that jointly esti-

mates the CFO and the interference power on each subcarrier. They take advan-

tage of an IFFT property to estimate the CFO, by transmitting pilot symbols

over some specific subcarriers while setting the others to zero. By performing

the IFFT step, a block composed of several identical parts is obtained and used

to estimate the CFO. However to perform the frequency error estimation, an ex-

haustive grid search is considered over the possible range of the CFO, leading to

a high computational cost. In addition, the CFO estimation is very sensitive to

the number of subcarriers disturbed by the NBI.

This section shows how to jointly estimate the PU-CFOs and to detect the cog-

nitive radio-NBI (CR-NBI) in an OFDMA PU-system, damaged by a CR-NBI

localized in time [Pove 11d], [Pove 11b]. The approach is again based on the

SPKF, with an additional step using the innovation energy to detect a variation

of the measurement noise covariance matrix [Foki 09], [Bian 05]. Knowing the

innovation distribution, two algorithms are proposed to detect the CR-NBI. The

first one is based on a binary hypothesis test (BHT), whereas the second con-

sists in comparing the derivate of a cumulative sum (CUSUM) to a threshold. In

addition, an alternative way to use these tests is proposed.

2.5.1 System Description

First, let us consider a multicarrier CR system network with an available band-

width W cr divided among Kcr subcarriers. In addition, the uplink PU-OFDMA

system consists of a single BS and U simultaneously independent users. Then, the

available bandwidth W pu = αW cr of the PU-OFDMA system is divided among

Kpu ≤ Kcr subcarriers, with 0 < α < Kpu

Kcr ≤ 1. The PU and CR bandwidths are

shown in figure 2.18.

In the following, let us associate the subscript u to the uth user in the PU-

OFDMA system, with u ∈ {1, . . . , U}. Let Spu
u (mpu, kpu) be the emitted PU-

symbol with a time duration T pu at the kputh subcarrier associated to the mputh

PU-OFDMA symbol, where Mpu is the number of emitted PU-OFDMA symbols.
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Figure 2.18: PU and CR system spectrum, where PUA and PUB denote the

frequency bands used by other PUs

Each PU-OFDMA symbol is composed of Kpu PU-symbols and has a time dura-

tion1 T pu
ofdma. See figure 2.19. In addition, Spu

u,kpu(mpu) = 0 if the kputh subcarrier

is not assigned to the uth user.

Remark: All the subcarriers are assumed to be used. For this reason, the num-

ber of samples in one OFDMA symbol corresponds to the number of subcarriers.

The PU-channel impulse response is defined as follows:

hpu
u =[hpu

u (0), hpu
u (1), . . . , hpu

u (lpu), . . . , hpu
u (Lpu

u − 1)] (2.25)

where Lpu
u is the length of the maximum channel delay spread.

To help the reader, the PU system parameters are summarized in table 2.8.

At the receiver, due to the propagation conditions, time offset and CFO are

induced in the signal. The nth sample of the mth PU-OFDMA received symbol

after time synchronization and cyclic prefix removal can be written as follows

(See chapter 1 in section 1.4.2.2):

Ru(mpu, n)=ej2π ǫun
Kpu

Kpu−1∑

kpu=0

Spu
u (mpu, kpu)Hpu

u (kpu)ej2π kpun
Kpu (2.26)

1It should be noted that T pu
ofdma is the time duration of one PU-OFDMA symbol and is not

the time duration of one PU-OFDMA frame.

81



2. Frequency Synchronization and Channel Equalization of OFDMA
Uplink Systems

Description Parameter

Bandwidth W pu

Symbol time T pu = 1
W pu

Number of subcarriers Kpu

Number of emitted OFDMA symbols Mpu

Subcarrier index kpu ∈ {0, . . . Kpu − 1}
OFDMA emitted symbol index mpu ∈ {0, . . . Mpu − 1}

Emitted symbol at the kputh subcarrier
Spu

u,kpu(mpu)
associated to the mputh PU-OFDMA symbol

OFDMA symbol time T pu
ofdma = KpuT pu

Channel delay spread index lpu
u ∈ {0, . . . , Lpu

u − 1}
lputh coefficient of

hpu
u,lpu

the channel impulse response

Maximum channel delay spread length Lpu
u

Channel frequency response Hpu
u,kpu

Table 2.8: PU system parameters for the uth user

where n ∈ {0, 1, . . . , Kpu − 1}, ǫu is the normalized PU-CFO and

Hpu
u (kpu) =

∑Lpu
u −1

lpu=0 hpu
u (lpu)e−j2π lpukpu

Kpu is the channel frequency response associ-

ated to the kputh subcarrier.

The normalized PU-CFOs row vector ǫ is defined in (2.4). Let us now define the

row vector that contains the PU-channel impulse responses of each user, respec-

tively:

hpu = [hpu
1 , hpu

2 , . . . , hpu
u , . . . , hpu

U ] (2.27)

Concerning the CR-signal, the analog baseband signal emitted I(t) by the

CR-antenna, without cyclic prefix, at time t is given by:

I(t) =
Kcr−1∑

kcr=0

Scr(mcr, kcr)ej2πfcr
k

(t−mcrT cr
ofdm

) (2.28)

where Scr
kcr(mcr) is the emitted CR-symbol with a time duration T cr at the kcrth

subcarrier associated to the mcrth CR-OFDM symbol, where M cr is the number

of emitted CR-OFDM symbols. Moreover, Scr
kcr(mcr) = 0 if the spectrum sensing

decides that the kcrth subcarrier is busy and mcrT cr
ofdm ≤ t < (mcr + 1)T cr

ofdm.

T cr
ofdm is the CR-OFDM symbol time and f cr

k is the baseband frequency of the

kcrth subcarrier.

At the PU-BS antenna, the CR-received signal after the convolution with the
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Description Parameter

Bandwidth W cr

Symbol time T cr = 1
W cr

Number of subcarriers Kcr

Number of emitted OFDM symbols M cr

Subcarrier index kcr ∈ {0, . . . Kcr − 1}
OFDM emitted symbol index mcr ∈ {0, . . . M cr − 1}

Emitted symbol at the kcrth subcarrier
Scr

kcr(mcr)
associated to the mcrth CR-OFDM symbol

OFDM symbol time T cr
ofdm = KcrT cr

Baseband frequency of the subcarrier f cr
k = k

T cr
ofdm

= k
KcrT cr

Channel delay spread index lcr ∈ {0, . . . , Lcr − 1}
lcrth coefficient of

hcr
lcr

the channel impulse response

Maximum channel delay spread length Lcr

Channel frequency response Hcr
kcr

Table 2.9: CR system parameters

Description Parameter

Bandwidth W cr = W pu/α

Symbol time T cr = αT pu

OFDM symbol time T cr
ofdm = γT pu

ofdma = α(Kcr/Kpu)T pu
ofdma

Table 2.10: Relations between PU and CR system parameters

channel can be expressed as:

V (t) =
Lcr−1∑

lcr=0

hcr(lcr)
Kcr−1∑

kcr=0

Scr(mcr, kcr)ej2πfcr
k

(t−mcrT cr
ofdm

−lcrT pu) (2.29)

where hcr
lcr are the coefficients of the CR-channel impulse response,

lcr ∈ {0, 1, . . . , Lcr − 1} and Lcr is the length of the maximum channel delay

spread.

Once again, to help the reader, the CR system parameters are summarized in

table 2.9. In addition, table 2.10 shows the relations between the PU and the

CR-system parameters.

The received signal is sampled at the sampling frequency:

fs =
1

T pu
(2.30)
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Then, using (2.29), (2.30) and tables 2.8-2.10, the unknown downsampled

CR-NBI1 produced by a fault of spectrum sensing detection can be expressed

as follows:

V (mcr, n) = Z(mcrT cr
ofdm +

n

fs

) =
Lcr−1∑

lcr=0

hcr(lcr)
Kcr−1∑

kcr=0

Scr(mcr, kcr)ej2πfcr
k

( n
fs

−lcrT pu)

=
Kcr−1∑

kcr=0

Scr(mcr, kcr)
Lcr−1∑

lcr=0

hcr(lcr)e−j2π kcrlcrT pu

KcrT cr ej2π kcrnT pu

KcrT cr

=
Kcr−1∑

kcr=0

Scr(mcr, kcr)Hcr
kcrej2π kcrn

αKcr

(2.31)

where Hcr(kcr) =
∑Lcr−1

lcr=0 hcr(lcr)e−j2π kcrlcr

αKcr represents the unknown CR-channel

frequency response associated to the kcrth subcarrier.

Thus, the PU-OFDMA received signal at the BS satisfies:

R(mpu, n) =

{

f(mpu, n, ǫ, hpu) + V (mcr, n) + B(mpu, n) if n1 ≤ n ≤ n2

f(mpu, n, ǫ, hpu) + B(mpu, n) otherwise

(2.32)

where f(mpu, n, ǫu, hpu
u ) =

∑U
u=1 Ru(mpu, n) and B(mpu, n) is a zero-mean com-

plex AWGN with variance σ2
B. In addition, n1 ∈ {0, 1, . . . , Kpu(1 − γ)} is the

first sample of the CR-NBI and n2 = n1 + γKpu − 1 is the last sample of the

CR-NBI, with 0 ≤ γ ≤ 1. The time-domain representation of the signals is shown

in figure 2.19. To have a clearer idea, a time-frequency domain representation of

the received signal at the BS is shown in figure 2.20.

2.5.2 Joint Disturbance Detection and CFO Estimation

Now, we suggest jointly detecting the CR-NBI and estimating both the PU-CFOs

and channels. A preamble of one OFDMA symbol is used for the channel/CFOs

estimation. It is assumed that the system is synchronized in time and that the

PU-channels and the PU-CFOs do not vary over the OFDMA symbols of the

OFDMA frame.

1CRs may likely use wide bands. However, due to the fault of spectrum sensing, a CR-NBI

is produced over some subcarriers allocated to the PU.
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Figure 2.19: Time representation of the PU and CR-NBI signals

Figure 2.20: Time-frequency representation of the mputh PU-OFDMA received

symbol at the BS
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First of all, let us define the following state vector:

x(n) =
[

ǫ(n) Re {hpu(n)} Im {hpu(n)}
]T

(2.33)

that satisfies the following state equation:

x(n) = x(n − 1) ∀n (2.34)

Secondly, let Y(n) be the observation column vector that stores the real and the

imaginary parts of the PU-OFDMA received signal R(mpu, n):

Y(n)=

{

C(n, x(n)) + V(n) + B(n) if n1 ≤ n ≤ n2

C(n, x(n)) + B(n) otherwise
(2.35)

where

C(n, x(n)) =
[

Re {f(n, ǫ, hpu)} Im {f(n, ǫ, hpu)} ]T ,

B(n) =
[

Re {B(n)} Im {B(n)} ]T is a 2 × 1 white Gaussian noise vector with co-

variance matrix (σ2
B/2)I2 and V(n) =

[

Re {V (n)} Im {V (n)} ]T is the

2 × 1 zero-mean Gaussian CR-NBI vector with covariance matrix (σ2
V /2)I2. The

CR-NBI signal can be considered as a zero-mean Gaussian vector due to the large

number of subcarriers Kcr [Huan 10b].

The SPKF provide “accurate” estimations as long as the received signal is only

disturbed by the AWGN [Pove 10], whereas significant degradations are expected

in the presence of the CR-NBI. To maintain the estimation performance, it is

proposed to jointly detect the CR-NBI and estimate the PU-CFOs.

The approach operates for the nth sample in three steps:

1. estimating the state vector x̂(n|n) by means of SPKF from the observations

{Y(0), Y(1), . . . , Y(Kpu − 1)}

2. calculating the innovation energy ||Ỹ(n)||2 where Ỹ(n) = Y(n) − Ŷ(n),

Ŷ(n) =
[

Re
{

R̂(mpu, n)
}

Im
{

R̂(mpu, n)
} ]T

= C(n, x̂(n|n)) is the estima-

tion of Y(n),

3. testing whether there is CR-NBI or not by using the innovation energy.

Indeed, ||Ỹ(n)||2 increases much when there is CR-NBI. See figure 2.21.

This gap is due to the received signal variance that jumps from σ2
B to

σ2
B + σ2

V .
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In the following, let us define the SNR expressed in dB as SNR= 10 log( σ2
u

σ2
B

),

where E{|R(mpu, n)|2} = σ2
u is the mean power of the received signal from

the uth user. In addition, we define the signal-to-interference ratio (SIR)

expressed in dB as SIR = 10 log( σ2
u

σ2
V

).

Remark: If the CR-NBI is assumed to appear at the nth sample, the esti-

mated state vector at time n − 1 and its covariance matrix are kept stored:

x̂nu = x̂(n − 1|n − 1) and Pnu = P(n − 1|n − 1). They will be used as a new

starting point for the CFO and channel estimation once the CR-NBI is considered

to have disappeared. During the CR-NBI perturbation, SPKF provides an esti-

mation of the state vector that is not reliable, but useful to detect the presence

of the CR-NBI.

In the next subsections, two tests to detect the CR-NBI are presented.
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Figure 2.21: Time representation of the innovation energy
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2.5.2.1 Combining SPKF and Binary Hypothesis Test

(SPKF-BHT)

To decide whether there is CR-NBI in the OFDMA symbol or not, the following

binary hypothesis is tested:

{

H0 : C(n, x(n)) + V(n) + B(n)
H1 : C(n, x(n)) + B(n)

(2.36)

The complex residual R̃(mpu, n) is a zero-mean Gaussian process with variance

tr
{

PYY(n)
}

where PYY(n) denotes the innovation covariance matrix obtained

by the SPKF at the nth sample. Then, the probability of false alarm can be

defined as:

Pfa = P (|R̃(n)|2 > λ(n)|H1) = P (||Ỹ(n)||2 > λ(n)|H1)

= 2P (||Ỹ(n)|| >
√

λ(n)|H1) (2.37)

= 2(1 − P (||Ỹ(n)|| <
√

λ(n)|H1))

= 2(1 − cdf(
√

λ(n)))

where λ(n) is a threshold at the nth sample set by the practitioner and cdf(.) is

the cumulative density function (CDF) of (.).

Using ||Ỹ(n)|| the properties and the CDF of the Rayleigh distribution1, one has:

λ(n) = tr
{

PYY(n)
}

ln(
2

Pfa

) (2.38)

If ||Ỹ(n)||2 ≤ λ(n), no CR-NBI is assumed to be present. When ||Ỹ(n)||2 > λ(n),

the CR-NBI is supposed to be at the nth sample. The CR-NBI detection and

the PU estimation algorithm is summarized in figure 2.22.

2.5.2.2 Combining SPKF and CUSUM Test (SPKF-CT)

As an alternative to the BHT, a change detection algorithm known as the CUSUM

test [Bass 93] is also proposed to be combined with the SPKF. The CUSUM test

is an accumulative sum of a data sequence. It aims at detecting abrupt changes in

1R̃(n) is Gaussian distributed, so ||Ỹ(n)|| =
√

Re{R̃(n)}2+Im{R̃(n)}2 is Rayleigh dis-

tributed. Then cdf(
√

λ(n)) = 1 − e
−

λ(n)

tr{PYY(n)} .
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OKOKSPKF x̂(n)
Measurement 
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Y(n) ||.||
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Figure 2.22: SPKF-BHT algorithm

the mean of the sequence. When using the CUSUM, if the mean increases much,

the cumulative sum also increases. It has been used in various applications such

as information sciences [Huan 11] and biomedicine [Yang 10].

To decide wheter the CR-NBI is present or not, we now suggest using the upper

control limit of the CUSUM test defined as follows:

C+(n) = max(0, C+(n − 1)) + ||Ỹ(n)||2 − tr {PỸỸ(n)}
= max(0, C+(n − 1)) + ỸH(n)Ỹ(n) − E{ỸH(n)Ỹ(n)}

(2.39)

Given (2.39) and fixing a threshold, the CUSUM test makes it possible to detect

when the CR-NBI begins, but does not give information when it ends. See figure

2.23.

Thus, it is proposed to look at the slope of the curve C+(n):

δ(C+(n))

δn
= C+(n) − C+(n − 1) (2.40)

Two cases can be considered.

1/ Let us assume that C+(n − 1) > 0; if the PU-OFDMA symbol is disturbed by

the CR-NBI, one has:

tr
{

PYY(n)
}

<< ||Ỹ(n)||2 (2.41)

Given (2.39) and (2.40), this leads to:

δ(C+(n))

δn
≈ ||Ỹ(n)||2 (2.42)

Otherwise, if the PU-OFDMA is not disturbed by the CR-NBI:

tr
{

PYY(n)
}

≈ ||Ỹ(n)||2 (2.43)
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hence one has:
δ(C+(n))

δn
= ||Ỹ(n)||2 − tr

{

PYY(n)
}

≈ 0 (2.44)

2/ Let us now assume that C+(n − 1) ≤ 0. Then if the PU-OFMDA symbol is

disturbed by the CR-NBI and given (2.39), (2.40) and (2.41) one has:

δ(C+(n))

δn
= ||Ỹ(n)||2 − C+(n − 1) > ||Ỹ(n)||2 (2.45)

Otherwise if there is no CR-NBI distortion, given (2.39), (2.40) and (2.43) one

has:
δ(C+(n))

δn
= ||Ỹ(n)||2 − tr

{

PYY(n)
}

+ C+(n − 1)

≈ C+(n − 1)
(2.46)

Therefore, one has to compare δ(C+(n))
δn

to a threshold in order to detect the end of

the CR-NBI in the PU-OFDMA symbol. The CR-NBI is assumed to be present

provided that δ(C+(n))
δn

is higher than the threshold.

Concerning the choice of the threshold, we suggest the one defined in (2.38).
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Figure 2.23: Time representation of C in the CUSUM test
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2.5.2.3 Improving the Disturbance Detection

In this subsection, the goal is to reduce the gap between the CR-NBI probability

of detection Pcr
d = P (||Ỹ(n)||2 > λ(n)|H0) and the PU probability of detection

P
pu
d = P (||Ỹ(n)||2 < λ(n)|H1), in order to obtain better estimation performance

when using the SPKF-BHT and the SPKF-CT. If the CR-NBI probability of

detection Pcr
d increases, the PU probability of detection P pu

d decreases. Therefore,

there are less samples available to perform the CFO estimation. This hence

may lead to poor estimation of the CFO. The PU probability of detection P pu
d

determines the values that are not disturbed by the CR-NBI and that are going

to be used in the estimation task.

When looking at figure 2.21, the values of ||Ỹ(n)||2 are not always higher than the

threshold between n1 and n2 sample indexes. In addition, the values of ||Ỹ(n)||2
may sometimes exceed the threshold outside the interval [n1, n2]. To improve the

CR-NBI and the PU detections when using the BHT, we propose to take into

account the evolution of ||Ỹ(n)||2 over several samples. Therefore, we suggest

defining a new residual value ||Ỹmean(p)||2 as follows:

||Ỹmean(p)||2 =
1

β

β(p+1)−1
∑

q=βp

||Ỹ(q)||2 (2.47)

where p ∈ {0, . . .P − 1}, P =
⌊

Kpu

β

⌋

and ⌊.⌋ is the integer part of {.}.

If Kpu

β
6=
⌊

Kpu

β

⌋

, i.e. Kpu

β
/∈ Z, the last sample of the new residual value is:

||Ỹmean(P)||2 =
1

Kpu − βP

Kpu−1∑

q=βP

||Ỹ(q)||2 (2.48)

If the value of ||Ỹmean(p)||2 exceeds the value of the threshold, the algorithm

decides that the CR-NBI is present during the corresponding samples. See algo-

rithm 3.

Based on the same idea, to improve the detection performance when using the

CUSUM test, we propose to keep only P −
⌊

P − Kpu

β

⌋

(i.e P or P + 1) samples

as follows:

C+
mean(p) = C+(βp − 1) (2.49)

with p ∈ {1, . . .P − 1}, C+
mean(0) = C+(0) and if Kpu

β
/∈ Z then

C+
mean(P) = C+(Kpu − 1). See figure 2.24.
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Algorithm 3 Calculate ||Ỹmean(p)||2

Require: ||Ỹ(q)||2, Kpu, β

for p = 0 to Kpu

β
− 1 do

||Ỹmean(p)||2=1
β

∑β(p+1)−1
q=βp ||Ỹ(q)||2

end for

if Kpu

β
6=
⌊

Kpu

β

⌋

then

||Ỹmean(
⌊

Kpu

β

⌋

)||2= 1

Kpu−β⌊Kpu

β ⌋
∑Kpu−1

q=β⌊Kpu

β ⌋ ||Ỹ(q)||2

else

end if

Figure 2.24: C+
mean(p + 1) and C+(n) with Kpu

β ∈ Z

If the value of δ(C+
mean(p))

δp
= C+(p)−C+(p−1)

β
exceeds the value of the threshold, the

algorithm decides that the CR-NBI is present in the corresponding samples.

In the next subsection, simulation results show the relevance of our algorithms

and their improvements to jointly detect the CR-NBI and estimate the PU-CFOs.

2.5.3 Simulation Results

This section presents computer simulations to validate the performance of the

SPKF-BHT and the SPKF-CT estimators. Firstly, the simulation protocol is

presented. Secondly, simulations present how to choose the parameter β pre-

sented in subsection 2.5.2.3. Finally, the last subsection shows a comparative

study in terms of CFO estimation with already existing estimators [More 08], the

influence of CR-NBI power on the CFO estimation performance and the channel

estimation performance of the proposed algorithms.
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Simulation protocol: A PU-OFDMA WirelessMANTMsystem, which is com-

posed of U = 4 users sharing Kpu = 512 subcarriers and with a cyclic prefix

Ng = Kpu/32 ≥ max
u

(Lpu
u ) is considered. QPSK is used to modulate the infor-

mation bits. The carrier frequency is at fc = 2.6GHz and the bandwidth is set

to W pu = 5MHz. A CR-NBI affects Knbi = 40 subcarriers of the PU-OFDMA

system bandwidth. It is supposed a transmission over a normalized Rayleigh

slow-fading frequency-selective channel composed of Lpu
u = 7 ∀u multipaths.

For very low values of SIR, as ||Ỹ(n)||2 >> 0 during the CR-NBI presence, its

detection can be easy. In addition for high values of SIR, i.e SIR> 0dB the dif-

ference between σ2
B and (σ2

B + σ2
V ) may be negligible and would not affect the

Kalman filter estimation performance. Therefore the case when SIR= −10 dB is

studied. The CR-NBI can begin anywhere in the PU-OFDMA received symbol.

For comparison reasons with [More 08], the CR-NBI is supposed to affect only

the subcarriers assigned to one PU.

1 2 3 4 5 6 7 8

0.65

0.7

0.75

0.8

C
R

-N
B

I
P

ro
b
ab

il
it
y

of
d
et

ec
ti
on

β

 

 

SPKF-BHT
SPKF-CT

Figure 2.25: CR-NBI detection, SNR= 0 dB, SIR= −10 dB, Pfa = 0.05 and

γ = 0.5
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2.5.3.1 How to Improve the Disturbance Detection?

This subsection presents how to select a “well suited” value of β, which is the

parameter presented in subsection 2.5.2.3, to reduce the gap between the CR-NBI

probability of detection Pcr
d and the PU probability of detection P

pu
d .

Firstly the impact of β in the CFO estimation performance is shown. The SNR

is set to 0 dB and the Pfa is set to 0.05.

Let us consider that the CR-NBI disturbs half of the PU-OFDMA symbol

(γ = 0.5). Figure 2.25 shows the CR-NBI probability of detection Pcr
d for dif-

ferent values of β. We clearly see that if β increases, the CR-NBI probability of

detection Pcr
d increases and the CFO estimation should normally be improved.

However, when looking at figure 2.26 we can see that the PU probability of de-

tection P
pu
d does not increase with the value of β as the CR-NBI probability of

detection Pcr
d . For both proposed algorithms, there are “well suited” values of β

in terms of PU probability of detection. For the SPKF-BHT, the “well suited”

value of β is between 4 and 6 whereas the “well suited” value of β is between 2

and 3 when using the SPKF-CT. The CR-NBI probability of detection Pcr
d and

the PU probability of detection P
pu
d has been increased, then better estimation

performance should be obtained by using this optimal β parameter.
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Figure 2.26: PU detection, SNR= 0 dB, SIR= −10 dB, Pfa = 0.05 and γ = 0.5
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Tables 2.11 and 2.12 show the CFO estimation performance in terms of MMSE

for different values of β and duration of the CR-NBI over the symbol. It should

be noted that the duration of the CR-NBI over the PU-OFDMA symbol does not

change the influence of β in the algorithm. For different durations of the CR-NBI

over the symbol, we can see that better performance in terms of CFO estimation

are obtained for values β between 4 and 6 for the SPKF-BHT. In addition, it can

be seen that the “well suited” value of β in terms of probability of detection is

between 2 and 3 for the SPKF-CT.

SNR = 0 dB SIR = −10 dB

γ 0.47060 0.5333 0.6154

β = 1 1.124 × 10−3 1.257 × 10−3 2.103 × 10−3

β = 2 8.517 × 10−4 9.526 × 10−4 1.593 × 10−3

β = 3 7.949 × 10−4 8.891 × 10−4 1.487 × 10−3

β = 4 5.735 × 10−4 6.414 × 10−4 1.073 × 10−3

β = 5 5.962 × 10−4 6.668 × 10−4 1.115 × 10−3

β = 6 5.678 × 10−4 6.350 × 10−4 1.062 × 10−3

β = 7 6.814 × 10−4 7.621 × 10−4 1.274 × 10−3

β = 8 7.382 × 10−4 8.256 × 10−4 1.381 × 10−3

Table 2.11: SPKF-BHT CFO estimation performance for different values of γ

and β, Pfa = 0.05

SNR = 0 dB SIR = −10 dB

γ 0.47060 0.5333 0.6154

β = 1 1.569 × 10−3 1.755 × 10−3 2.934 × 10−3

β = 2 7.471 × 10−4 8.356 × 10−4 1.397 × 10−3

β = 3 8.218 × 10−4 9.191 × 10−4 1.537 × 10−3

β = 4 1.494 × 10−3 1.671 × 10−3 2.795 × 10−3

β = 5 1.644 × 10−3 1.838 × 10−3 3.074 × 10−3

β = 6 1.718 × 10−3 1.922 × 10−3 3.214 × 10−3

β = 7 1.793 × 10−3 2.005 × 10−3 3.353 × 10−3

β = 8 1.868 × 10−3 2.089 × 10−3 3.493 × 10−3

Table 2.12: SPKF-CT CFO estimation performance for different values of γ and

β, Pfa = 0.05
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In figure 2.27, we can see the performance in terms of CR-NBI probability of

detection. Like the previous tests, better performance are obtained when the

BHT is used. When β = 1 and Pfa = 0.05, the CR-NBI probability of detection

for the SPKF-BHT is higher than the CR-NBI probability of detection for the

SPKF-CT. The difference is around 0.08. In addition, when Pfa = 0.05, the

CR-NBI probability of detection for the SPKF-BHT β = 6 is higher than the

CR-NBI probability of detection for SPKF-CT β = 2. The difference is around

0.15. Again it can be seen that the detection is improved when using β 6= 1; it

confirms the results shown in tables 2.11 and 2.12. Figure 2.28 shows the de-

tection performance in terms of PU probability of detection. In this test, better

detection performance are obtained with the CUSUM test.

It should be noted that the choice of an appropriate Pfa is a key point in the

development of the algorithms.
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Figure 2.27: CR-NBI detection, SNR= 0 dB, SIR= −10 dB and γ = 0.5

2.5.3.2 Comparative Study: Influence of the Disturbance Power over

the CFO Estimation and Channel Estimation Performance

Figure 2.29 shows the estimation performance in terms of MMSE for different

durations of the CR-NBI over the PU-OFDMA symbol. The SNR is again set to
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Figure 2.28: PU detection, SNR= 0 dB, SIR= −10 dB and γ = 0.5
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Figure 2.29: Robust CFO estimation performance, SIR= −10 dB, SNR= 0 dB

and Pfa = 0.05

0 dB. We clearly see that the proposed algorithms provide better CFO estimation

performance since γ < 0.6 in comparison with [More 08].

Figure 2.30 shows the CFO estimation performance in terms of MMSE. The CR-

NBI disturbs half of the PU-OFDMA symbol (γ = 0.5).
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In comparison with the modified ML estimator (MMLE) proposed in [More 08],

an improvement of 2 dB is obtained using the SPKF-CT using β = 1 and 7 dB

is obtained when using the SPKF-BHT using β = 6, for an MMSE of 10−3.
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Figure 2.30: Robust CFO estimation performance, SIR= −10 dB, Pfa = 0.05

and γ = 0.5

Table 2.13 shows the estimation performance in terms of MMSE for different

values of SIR. It should be noted that the proposed algorithms are not disturbed

by the power of the CR-NBI.

MMSE

SNR= 0 dB

SIR −30 dB −20 dB −10 dB 0 dB

SPKF 0.43520 0.08150 0.003557 0.00172

SPKF-CT β = 1 0.0028500

SPKF-BT β = 1 0.0012670

SPKF-CT β = 2 0.0008217

SPKF-BT β = 6 0.0003958

Table 2.13: Robust CFO estimation performance, Pfa = 0.05 and γ = 0.5

Since ĥpu is determined by the values ǫ̂, one can conclude that the proposed

estimators achieve accurate channel estimation. Figure 2.31 confirms the channel
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estimation performance of the algorithm. We can see a gain of 12 dB between

the SPKF-CT using β = 1 and the SPKF-BHT using β = 6.
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Figure 2.31: Robust channel estimation performance, SIR= −10 dB, Pfa = 0.05

and γ = 0.5

2.6 Conclusions

In this chapter we proposed to jointly estimate the CFOs and the channels for

an OFDMA uplink system by using a recursive approach. On the one hand, the

EKF, the SOEKF, the IEKF and the SPKF including the UKF and the CDKF

were considered. On the other hand, to relax the assumptions on the model and

measurement noise, the “extended H∞ filter” and the “unscented H∞ filter” filter

were studied.

Then, the above techniques have been combined with an MMSE-SD to obtain a

non-pilot aided CFO estimator for an OFDMA uplink. In addition, as the SPKF

give the best compromise between computational complexity and estimation per-

formance, it has been chosen to be combined with two statistical tests: the BHT

and the CUSUM test, to design two OFDMA robust CFO estimators.

Both SPKF-based algorithms are used to estimate the CFOs and the channels of

different users in a PU-OFDMA system disturbed by a localized in time CR-NBI.
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The proposed estimators operate in the time domain unlike other approaches that

estimate the CFO in presence of an NBI in the frequency domain [More 08].

By using a SPKF and without increasing the computational complexity, we take

advantage of the innovation to detect a sharp variation of the measurement noise

covariance matrix when there is CR-NBI. The SPKF enable the state vector to

be estimated and the innovation energy to be calculated. Then, a test detects

the variation of the measurement-noise covariance matrix by comparing the in-

novation energy with a threshold set by the practitioner.

When using the BHT, better performance are obtained in terms of the CR-NBI

probability of detection. However, when using the CUSUM, better performance

in terms of PU probability of detection are obtained. To reduce the gap between

the CR-NBI probability of detection and the PU probability of detection, a tech-

nique is then proposed. It consists in improving both probabilities of detection

by watching the evolution of the innovation energy.

Our method outperforms other existing methods [More 08]. However, the pro-

posed estimators are sensitive to the duration in time of the CR-NBI.

The next chapter still deals with the constraints addressed in this chapter, i.e.

frequency synchronization and channel equalization, but in the context of the

uplink OFDM-IDMA systems.
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3.1 Introduction

The OFDM-IDMA technique initially proposed by Mahafeno et al. [Maha 06]

has been introduced in chapter 1.

Firstly, OFDM-IDMA can be seen as a special case of multicarrier CDMA

(MC-CDMA). IDMA inherits many advantages from CDMA, in particular, its

robustness against different kinds of interferences. In addition, the autocorrela-

tion properties of the IDMA transmitted signal make it possible to take advantage

of the multipath fading channel diversity1. The key principle of IDMA is that

the spreading code is the same for all users, unlike CDMA2. The user distinction

is done by using different interleavers. They are generated independently and

randomly, allowing BER to be near the theoretical values of single-user systems.

Secondly, OFDM-IDMA can be seen as a special case of OFDMA. OFDM-IDMA

inherits the robustness to ISI from OFDMA. In addition, the multicarrier scheme

allows the frequency allocation algorithms to improve the spectral efficiency by

exploiting the spectral diversity. The main difference between these techniques

is that the entire bandwidth can be allocated to a single user for all the OFDM-

IDMA frame duration. This may lead to a very high single-user capacity. Indeed,

if we assume an OFDMA system with U users and K subcarriers all used, each

user can transmit K
U

symbols at the same time. Now if one also consider an

OFDM-IDMA system with a spreading factor3
S = log2(U), each user can trans-

mit K
S

= K
log2(U)

symbols at the same time. We clearly see that log2(U) < U ; thus

the users in the OFDM-IDMA system can transmit more symbols at the same

time than in an OFDMA system.

Furthermore, an OFDM-IDMA scheme may improve the duty cycle of a single-

user transmission4 in comparison with an OFDMA system. Indeed, in an OFDMA

1In chapter 1 in section 1.3, we show that the received signal is a superposition of several

delayed and attenuated copies of the transmitted signal, due to the multipath fading channel.

This diversity may be exploited by a combination of the different copies using a rake receiver

[Proa 95].
2In chapter 1 in section 1.4.3.1, we present that the ENC of the OFDM-IDMA transmitter

incorporates a spreading code.
3
S = log2(U) is the lowest spreading factor to allow U users transmit at the same time.

4The duty cycle of a single-user transmission is defined as the ratio between the duration

of one user frame and the time between two successive frames.
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system, the maximum number of users allowed by the system to transmit at the

same time is U = K. In that case, each user transmits one symbol at the same

time. In an OFDM-IDMA system, the maximum number of users allowed by

the system to transmit at the same time is U = 2S. In addition, to transmit

one symbol at the same time, it is necessary that K = S. Then, the maximum

number of users allowed by an OFDM-IDMA system to transmit one symbol at

the same time is U = 2K . We clearly see that 2K > K; the OFDM-IDMA enables

more users to perform a transmission at the same time.

Today, the OFDM-IDMA scheme is not used as the multiple access technique by

mobile wireless standards, but for the above reasons, it can be seen as a promising

technique for the future mobile wireless standards.

To become one of the multiple access schemes of future mobile standards, several

constraints have to be addressed, such as the channel equalization. Nevertheless,

few papers deal with this issue in IDMA systems. Thus, Zhou et al. develop an

iterative channel estimation process that uses pilot subcarriers [Zhou 07]. The

authors propose two different approaches: the first one is based on an unbiased LS

estimator whereas the second is based on the maximum ratio combining (MRC)

method. In [Song 09], the authors propose an EM estimation method to obtain

the CSIs. More specifically, in [Suya 08], Suyama et al. insert a least mean

square (LMS) estimator in the iterative process of an OFDM-IDMA receiver. In

addition, the authors in [Rehm 08] present a low-complexity uplink channel es-

timation. By taking advantage of the channel coding, the transmitter creates a

training sequence in order to estimate the channel through a linear detection at

the receiver.

However, in the above approaches, a perfectly frequency synchronized system

is considered. In wireless communication systems with multicarrier modulation,

this assumption is usually not true. Therefore, a CFO estimation/correction has

to be considered at the receiver.

Several approaches of the frequency synchronization in multicarrier systems have

been proposed in the last years. More particularly, in MC-CDMA systems, Chien

et al. present a blind recursive estimation of the CFOs by using an EM algo-

rithm [Chie 07]. In [Thia 07], the authors take advantage of the knowledge of the
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second-order statistics of the received signal. They suggest a two-stage CFO esti-

mation. The first one involves a grid search to obtain the initialization of the CFO

estimations, whereas the second consists of a CFO estimation based on the LMS

algorithm. In [Chen 10], the CFOs are estimated by searching the peaks of the

correlation function of the received signal. In addition, the reader can look at the

frequency synchronization techniques for OFDMA systems, [Pun 04a], [Pun 06]

and [Sezg 08] presented in chapter 2.

In the above methods, the CFO correction can be performed before or after the

CP-OFDM demodulation. The CFO correction methods can take advantage of

the orthogonal codes in MC-CDMA systems, whereas the CFO correction meth-

ods usually utilize the CAS1 in OFDMA systems. The CFO estimation/correction

issue in the particular OFDM-IDMA scheme becomes a challenging task2. In

[Cao 04a], Cao et al. propose to correct the CFO in an OFDMA uplink system

after the CP-OFDMA demodulation through a linear detection3, without taking

advantage of the CAS. This CFO correction method can be completely applied

to OFDM-IDMA systems. However, CFOs and CSIs are assumed to be perfectly

known. Although frequency synchronization has been addressed in MC-CDMA

and OFDMA, it has never been studied in an OFDM-IDMA system to our knowl-

edge.

Given the above considerations, our contribution in this chapter is twofold:

1. We propose two SPKF based receivers: the first one is a modification of

the OFDM-IDMA receiver proposed by [Maha 06], whereas the second uses

a STBC to take advantage of the space diversity. The proposed OFDM-

IDMA receivers aim at jointly estimating the CFO and the channel of each

user in the system, by using a preamble of one OFDM-IDMA symbol.

1In chapter 2 in section 2.2, we present several CFO correction methods that take advantage

of the CAS such as the single-user detector method and the methods presented in [Choi 00]

and [Huan 05].
2Let us recall that in an OFDM-IDMA system all users may use the same spreading code

and a subcarrier is allocated to all users at the same time.
3In subsection 3.2, we show that after the CP-OFDM demodulation, the received OFDM-

IDMA symbol can be expressed as a multiplication between a function depending on the CFO

and a function depending on the symbols and channel frequency responses.
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2. Both receivers operate in two steps. Firstly, the OFDM demodulation is

performed without any correction over the received signal. Then, the re-

sulting signal is inserted in the new versions of the IDMA receiver. Finally,

taking into account the interference produced by the CFO and knowing all

the CFOs and the CSIs, the IDMA iterative process is able to cancel both

the ICI and the MAI, and to recover the sent symbols.

3.2 OFDM-IDMA Modified Receiver

Like the OFDMA uplink system, the signal received at the BS is affected by

several CFOs and CSIs in an OFDM-IDMA uplink system. The nth sample of

received OFDM-IDMA symbol after time-synchronization and CP removing can

be expressed as:

R(n) =
U∑

u=1

ej2π ǫun
K

Lu−1∑

l=0

hu(l)Xu(n − l) + B(n) 0 ≤ n ≤ K − 1 (3.1)

where we recall that hu(l) is the lth coefficient of the CIR, ǫu is the normalized

CFO, Xu(n) is the nth sample of the transmitted OFDM-IDMA symbol and B(n)

is a zero-mean AWGN with variance σ2
B.

Then, the received OFDM-IDMA symbol can be expressed as follows:

R
∆
= [R(0), R(1), . . . , R(n), . . . , R(K − 1)]T

=
U∑

u=1

EuhuXu
︸ ︷︷ ︸

Ru

+B
(3.2)

where Eu = diag
{[

1, ej2πǫu/K , . . . , ej2π(K−1)ǫu/K
]}

is the CFO matrix, hu is the

channel circulant matrix defined in (1.31), Xu is the transmitted OFDM-IDMA

symbol defined in (1.21) and B is a zero-mean AWGN vector with covariance

matrix σ2
BIK (See chapter 1 in section 1.4.3.2).

Given (1.20), it should be noted that (3.1) can be rewritten as follows:

R(n) =
U∑

u=1

ej2π ǫun
K

K−1∑

k′=0

Hu(k′)Su(k′)ej2π k′n
K + B(n) 0 ≤ n ≤ K − 1 (3.3)
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where Hu(k′) =
∑L−1

l=0 hu(l)e−j2π k′l
K is the channel frequency response associated

to the k′th subcarrier and Su(k′) is the symbol transmitted over the k′th subcar-

rier.

Given (3.3), although the effect of the CFO of one user or another can be elim-

inated, they cannot be suppressed all at the same time before the CP-OFDM

demodulation. Whatever the strategy chosen by the receiver to compensate the

CFO, there are still some interferences. Therefore, we suggest introducing the

CFO correction after the CP-OFDM demodulation.

After the CP-OFDM demodulation, the received symbol r(k) can be expressed

as follows:

r(k) =
K−1∑

n=0

R(n)e−j2π kn
K + b(k)

=
K−1∑

n=0

U∑

u=1

ej2π ǫun
K

K−1∑

k′=0

Hu(k′)Su(k′)ej2π
(k′−k)n

K + b(k)

=
U∑

u=1

K−1∑

k′=0

K−1∑

n=0

ej2π
(k′−k+ǫu)n

K Hu(k′)Su(k′) + b(k)

=
U∑

u=1

K−1∑

k′=0

F(k′ − k + ǫu)Hu(k′)Su(k′) + b(k)

(3.4)

where1

F(x) =
sin(xπ)

sin(xπ
K

)
ejπ

x(K−1)
K (3.5)

and

b(k) =
K−1∑

n=0

B(n)e−j2π kn
K (3.6)

Then, (3.4) can be rewritten as:

r(k) =
U∑

u=1

F(ǫu)Hu(k)Su(k) +
U∑

u=1

K−1∑

k′=0

k′ 6=k

F(ǫu + k′ − k)Hu(k′)Su(k′)

︸ ︷︷ ︸

ICI(k)

+b(k)
(3.7)

1Let us recall that
∑K−1

n=0 ej2π nx
K = 1−ej2πx

1−e
j2π x

K
= sin(xπ)

sin( xπ
K

) ejπ
x(K−1)

K .
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If we look at the received signal from the uth user point of view, (3.7) can be

expressed as a summation of a useful term and an interference term as follows:

r(k) = F(ǫu)Hu(k)Su(k) +
U∑

u′=1

u′ 6=u

F(ǫu′)Hu′(k)Su′(k) + ICI(k) + b(k)

= H(eq)
u (k)Su(k) +

U∑

u′=1

u′ 6=u

H
(eq)
u′ (k)Su′(k) + ICI(k) + b(k)

= H(eq)
u (k)Su(k) + ςu(k)

(3.8)

where

H(eq)
u (k) = F(ǫu)Hu(k) ∀u ∈ {1, . . . , U} (3.9)

ςu(k) =
U∑

u′=1

u′ 6=u

H
(eq)
u′ (k)Su′(k) + ICI(k) + b(k) (3.10)

and ICI(k) is a zero-mean ICI with variance σ2
ICI = E{|ICI(ǫ, k)|2}, caused by

the CFOs [Moos 94]. This interference can be considered as a Gaussian vector due

to the large number of subcarriers [Huan 10b]. It should be noted that the ICI

is included in ςu(k), the characteristics of which are used by the IDMA receiver

to estimate the transmitted bits (See chapter 1 in section 1.4.3.2).

In the following, we will show that the transmitted bits can be recovered by taking

into account the ICI characteristics in the IDMA receiver. In addition, as r(k)

in (3.8) is a function of ǫu′ and H
(eq)
u′ (k), it is necessary to know the CFOs and

the CSIs values at the IDMA receiver. In the next subsection, the estimations of

these vectors are presented.

3.2.1 Multiple CFO and Channel Estimation

Let us define the vector ǫ of size U and the vector h of size L =
∑U

u=1 Lu by

storing the CFOs and the CSIs of the U users in the system as follows:

ǫ = [ǫ1, ǫ2, . . . , ǫu, . . . , ǫU ] (3.11)

h = [h1, h2, . . . , hu, . . . , hU ] (3.12)
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where hu = [hu(0), hu(1), . . . , hu(l), . . . , h(Lu − 1)].

In order to restore orthogonality among each user subcarrier, both the CFO-

synchronization error vector ǫ and the CSI vector h have to be estimated at the

BS.

The state-space representation of the system (3.1)-(3.2) is the representation of

what happens during one OFDM-IDMA frame1.

Let us define the vector x(n) of size U = U + 2L, which is the state vector of the

system (3.1)-(3.2):

x(n) =
[

ǫ(n) Re {h(n)} Im {h(n)}
]T

(3.13)

Let Y be the 2 × K observation matrix that stores the real and the imaginary

parts of the received OFDM-IDMA symbol R:

Y(ǫ, h) = C(ǫ, h) + B

= [Y(0, ǫ, h), Y(1, ǫ, h), . . . , Y(n, ǫ, h), . . . , Y(K − 1, ǫ, h)]
(3.14)

where C(ǫ, h) is a 2 × K matrix that stores the real an the imaginary parts of

the contribution of all users to the received OFDM-IDMA symbol:

C(ǫ, h) =






Re
{
∑U

u=1 Ru

}T

Im
{
∑U

u=1 Ru

}T






= [C(0, ǫ, h), C(1, ǫ, h), . . . , C(n, ǫ, h), . . . , C(K − 1, ǫ, h)]

(3.15)

and

B =

[

Re{B(n)}T

Im{B(n)}T

]

= [B(0),B(1), . . . ,B(K − 1)]

(3.16)

B(n) is an AWGN vector with zero-mean and covariance matrix
σ2

B

2
I2.

Now let us introduce the state-space representation of the system to estimate the

CFO and the channel:

State equation:

x(n) = x(n − 1) + w(n) ∀ n ∈ [0, K − 1] (3.17)

1The OFDM-IDMA frame is a block composed of several OFDM-IDMA symbols.
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Measurement equation:

Y(n) = C(n, x(n)) + B(n) ∀ n ∈ [0, K − 1] (3.18)

where w(n) is an AWGN matrix with zero-mean and covariance matrix σ2
wIU. It

should be noted that σ2
w is very low and can even be equal to 0.

The SPKF detailed in appendix E is used to estimate the CFOs and the channels,

after the time synchronization and CP removal.Then, the OFDM demodulation

is performed without any CFO correction and the resulting samples are used in

the modified IDMA receiver presented in the next subsection.

3.2.2 Modified IDMA Receiver

At the IDMA receiver, an a priori knowledge of H(eq)
u (k) is required. In addition,

it is necessary to characterize the interference term ςu(k) and the noise b(k).

Given (3.9) and the estimated values of the CFO ǫ̂u and the CSI ĥu, we can

obtain Ĥ(eq)
u (k) which is an estimation of H(eq)

u (k).

Then, given the output r(k) of the OFDM demodulation, the values of Ĥ(eq)
u (k),

the additive-noise variance σ2
B, the ICI variance σ2

ICI and gESE
u (k), the IDMA

reception can be performed1.

Let us view the transmitted symbol Su(k) as a random variable. Given (1.41),

the modified ESE computes the mean and the covariance of Su(k) as in (1.46) and

(1.47) respectively. For the initialization process, gESE
u (k) = 0 for i = 1, where i

denotes the iteration number with i ∈ {1, . . . , Iidma} and Iidma is the maximum

number of iterations. Then, assuming that Su are independent and identically

distributed, and applying the central limit theorem, we can consider a Gaussian

approximation for ςu(k) and r(k). Thus, they can be completely characterized by

their means and variances.

Given (3.8) and by replacing H(eq)
u (k) by its estimate, one has:

E(ςu(k)) = E(r(k)) − Ĥ(eq)
u (k)µu(k) ∀u, k

V ar(ςu(k)) = V ar(r(k)) − (Ĥ(eq)
u (k))2υu(k) ∀u, k

(3.19)

1The proposed IDMA receiver may be applied to real and complex signals. For the sake of

simplicity, let us consider a BPSK modulation.
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It should be noted that (3.8) can be rewritten as:

r(k) =
U∑

u=1

H(eq)
u (k)Su(k) + ICI(k) + b(k) (3.20)

Then, given (3.20) and by replacing H(eq)
u (k) by its estimate, one has:

E(r(k)) =
U∑

u=1

Ĥ(eq)
u (k)µu(k) ∀u, k

V ar(r(k)) = σ2
Z +

U∑

u=1

(Ĥ(eq)
u (k))2υu(k) ∀u, k

(3.21)

with σ2
Z = σ2

ICI + σ2
B.

Unlike a conventional IDMA receiver, the interference-plus-noise is now a combi-

nation of the MAI, the ICI produced by the CFOs and the Gaussian noise.

The modified ESE process for the uth user at the ith iteration generates the value

of the a posteriori LLR as follows (See chapter 1 in section 1.4.3.2):

gESE

u (k) = 2Ĥ(eq)
u (k) × r(k) − E(ςu(k))

V ar(ςu(k))
∀u, k (3.22)

The outputs of the modified ESE are inserted in the user decoding process (See

gESE
1 (k)

gESE
1 (k)

gESE
U

(k)

gESE
U

(k)OFDM

demodulation

user

decoding

modified

ESE

SPKF initialization step

Ĥ
(eq)
u σ2

z = σ2
B + σ2

ICI

ĥ, ǫ̂

R

r(k)

1st user

estimated

bits

Uth user

estimated

bits

Figure 3.1: Proposed OFDM-IDMA uplink receiver, where the user decoding is

the same as in figure 1.20
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Algorithm 4 Modified ESE

Require: r(k), σ2
B, σ2

ICI , Ĥ(eq)
u (k), Iidma

Initialization step:

gESE
u (k) = 0 ∀u, k

Iterative process

for i = 1 to Iidma do

µu(k) = E(Su(k)) = tanh
(

gESE
u (k)

2

)

∀u, k

υu(k) = V ar(Su(k)) = 1 − (µu(k))2 ∀u, k

E(r(k)) =
∑U

u=1 Ĥ(eq)
u (k)µu(k) ∀u, k

V ar(r(k)) = σ2
Z +

∑U
u=1(Ĥ

(eq)
u (k))2υu(k) ∀u, k

E(ςu(k)) = E(r(k)) − Ĥ(eq)
u (k)µu(k) ∀u, k

V ar(ςu(k)) = V ar(r(k)) − (Ĥ(eq)
u (k))2υu(k) ∀u, k

gESE
u (k) = 2Ĥ(eq)

u (k) × r(k)−E(ςu(k))
V ar(ςu(k))

∀u, k

end for

chapter 1 in section 1.4.3.2). Then, at the ith iteration for i < Iidma, the outputs

of the decoding process are the values of gESE
u (k), that are reinserted in the ESE.

The ESE process is again performed. Finally, the decoding process produces

hard decisions to obtain the estimations of the transmitted bits during the final

iteration Iidma. See algorithm 4, where the modified ESE is summarized. Figure

3.1 shows the modified OFDM-IDMA uplink receiver.

3.2.3 Simulation Results

Simulation protocol:

We consider an OFDM-IDMA uplink system composed of U = 4, 8, 16 users over

K = 1024 subcarriers. The spreading factor is S = 64. BPSK is used to modulate

the information bits. The carrier frequency is at fc = 2.6GHz and the channel

bandwidth is set to W = 10MHz. We consider that the ENC consists only of the

insertion of a spreading code. We define the SNR= 10log( σ2
u

σ2
B

), where σ2
u is the

mean power of the received signal from the uth user, and the SIR= 10log( σ2
u

σ2
ICI

).

We consider a transmission over a normalized Rayleigh slow-fading frequency se-

lective channel channel composed of Lu = 1, 3, 5 ∀u. The CFOs are modeled as
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random variables with a normal distribution with zero-mean and variance 0.1.

The estimations are obtained by using control data of one OFDM-IDMA symbol.

Figure 3.2 shows the convergence speed of the SPKF for a different number of

users in the system. We can see that the number of users in the system does

not really affect the estimation performance of the SPKF. This is a key point

in OFDM-IDMA systems that allow a large number of users to transmit at the

same time. However, the computational complexity of the SPKF increases with

the number of users in the system. Then, we fix the number of user to U = 4.

Figure 3.3 shows the CFO estimation performance in terms of MMSE of one user

in the system. The SPKF allows the CFO and the channel of the users to be

estimated. The MMSE for an AWGN channel and for channels with different

length are presented. The channel estimation for different channel lengths give

the same estimation performance, around 10−2 for a SNR= 0dB. Previous studies

in [Ping 02a] and [Maha 06] show the performance of the IDMA receiver for dif-

ferent number of multipaths, for different number of users and different number

of iterations. It has been already proved that the performance of the IDMA re-

ceiver in terms of BER are better when the number of multipaths and iterations

increases and also when the number of users decreases [Ping 02a], [Maha 06]. For
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Figure 3.2: SPKF convergence speed
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Figure 3.3: CFO estimation performance in terms of MMSE, SIR= 0dB

this reason, we keep the number of users equal to U = 4, and the number of iter-

ations to 3. The following results are the average of 5000 OFDM-IDMA symbols.

Figure 3.4 shows the BER for a transmission over a normalized Rayleigh slow-

fading frequency selective channel channel composed of ∀u Lu = 1 and Lu = 3

multipaths. The efficiency of the algorithm is confirmed. Indeed, we can see

that for Lu = 1 and a BER = 10−1 the difference between the results of the

proposed scheme and the perfect case is lower than 1dB. In addition, we can

notice that for Lu = 3 and a BER= 10−2 the difference between the results of the

proposed scheme and the perfect case is less than 1 dB. In both cases (Lu = 1 and

Lu = 3), that the proposed scheme gives a gain of around 3dB for BER= 10−1

in comparison with the linear detection method presented in [Cao 04a]. Figure

3.5 shows the BER for a transmission over a normalized Rayleigh slow-fading

frequency selective channel channel composed of ∀u Lu = 5 multipaths. We can

see that the difference between the results of the proposed scheme and the perfect

case is lower than 1 dB. In addition, the proposed scheme gives a gain of around

2dB for BER= 10−2 in comparison with the linear detection method presented

in [Cao 04a]. It should be noticed that the performance for Lu = 5 are better

than for Lu = 3 and Lu = 1. The IDMA receiver takes advantage of the diversity

introduced by the propagation channel.
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Figure 3.4: BER performance for a channel with Lu = 1 and Lu = 3

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

No CFO - Channel Perfectly estimated

SPKF-CFO estimated - Channel perfectly estimated

SPKF-CFO/channel estimated

Linear detection-CFO and Channel perfectly estimated

Figure 3.5: BER performance for a channel with Lu = 5

114



3.3 Space-Time Block Code OFDM-IDMA Receiver

3.2.4 Conclusions

In this section, a modified OFDM-IDMA receiver is proposed. The receiver is

robust against ISI due to the OFDM modulation and it is robust against the

MAI due to the IDMA scheme. Unlike common approaches, the IDMA scheme

allows the CFO correction step to be skipped. After the OFDM demodulation,

the CFOs and the channels are jointly estimated by using a SPKF. Then, the

OFDM demodulation is performed without any CFO correction. Finally, the

modified IDMA receiver accurately estimates the transmitted bits of the uth

user, by taking into account the estimations of the SPKF and the interference

produced by the CFO. The proposed IDMA receiver is able to cancel the ICI

produced by the CFOs , as well as the MAI produced by the other users in the

system. Simulation results clearly show the efficiency of the proposed OFDM-

IDMA receiver. In addition, we show that the proposed receiver outperforms

existent CFO correction methods such as [Cao 04a].

In the next section, we show that the proposed scheme can be extended to the

multiple-input multiple-output (MIMO) case.

3.3 Space-Time Block Code OFDM-IDMA Re-

ceiver

Space-time coding is an effective method to reach the capacity of multiple input

multiple output (MIMO) wireless channels. It can supply transmit diversity and

power gain without limiting the bandwidth efficiency [Taro 97]. STBC is a kind

of space-time coding with simple encoding structure. It allows a simple ML de-

coding algorithm based on linear signal processing at the receiver [Taro 99].

Given the advantages of the STBC, it has been combined with IDMA. More

specifically, in [Wu 03] and [Ping 02b], interleaving is used to separate signals

from different antennas. If P denotes the number of transmit antennas, U × P

interleavers are required by the transmitter. Then, to reduce the complexity of

the transmitter, Yang et al. [Yang 08] propose a STBC-IDMA system which uses

only U interleavers. However, the authors do not aim at estimating the channel.

In [Shik 10], Suyama et al. propose a MIMO-OFDM IDMA system that uses
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IDMA
transmitter

Alamouti
encoder

CP-OFDM
modulation

CP-OFDM
modulationbits to be

transmitted Su

Su,2

Su,1

Xu,2

Xu,1

Figure 3.6: OFDM-IDMA-STBC transmitter for the uth user, the IDMA trans-

mitter is the same as in figure 1.19, Su,p are the IDMA symbols and Xu,p are the

CP-OFDM-IDMA symbols

U interleavers and address the channel estimation by inserting an LMS in the

iterative architecture of the IDMA receiver. Nevertheless, the authors consider a

frequency synchronized system.

To our knowledge the frequency synchronization in a STBC-OFDM-IDMA scheme

has never been addressed. Therefore, in this section we suggest a joint CFO and

channel estimation by using a SPKF in a STBC-OFDM-IDMA system.

3.3.1 System Description

In the following, let us consider an STBC-OFDM-IDMA system consisting of U

simultaneously users who transmit information toward a single BS. The available

bandwidth W is divided among K subcarriers. We assume that the transmitter

uses P = 2 antennas to transmit the information.

As the CSIs are unknown and in order to increase the space diversity, each

couple of antennas transmits information from one user by using the Alam-

outi scheme [Alam 98]. In the following, let us associate the subscript (u, p)

to the pth antenna and to the uth user in the system, with p ∈ {1, 2} and

u ∈ {1, . . . U}. As shown in figure 3.6, the STBC-OFDM-IDMA transmitter

works as follows:

The IDMA modulated symbols after the IDMA transmitter are denoted as:

Su
∆
= [Su(0), Su(1), . . . , Su(K − 1)]T (3.23)
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The Alamouti code is implemented. Then, the OFDM modulation is performed.

The resulting STBC-OFDM-IDMA symbols are:

Xu,1 = FHSu,1
∆
= FH [Su(0), −S∗

u(1), . . . Su(K − 2), −S∗
u(K − 1)]T

Xu,2 = FHSu,2
∆
= FH [Su(1), S∗

u(0), . . . Su(K − 1), S∗
u(K − 2)]T

(3.24)

Let us define the CSI as follows:

hu,p = [hu,p(0), hu,p(1), . . . , hu,p(l), . . . , hu,p(Lu,p − 1)] (3.25)

where Lu,p is the length of the channel.

Finally, a CP of size Ng ≥ max
u,p

(Lu,p) is inserted and the STBC-OFDM-IDMA

symbol is transmitted.

Moreover, let us define the row vector of size 2U ×1 that contains the normalized

CFOs of each user and the row vector of size L =
∑2

p=1

∑U
u=1 Lu,p that contains

the CSIs of each user, respectively:

ǫ = [ǫ1, ǫ2, . . . , ǫu, . . . , ǫU ]

h = [h1, h2, . . . , hu, . . . , hS] (3.26)

where ǫu = [ǫu,1, ǫu,2] and hu = [hu,1, hu,2].

At the receiver, due to the propagation conditions, the multipath channels and

the CFOs affect the transmitted signal. Without the noise contribution, after

time-synchronization and CP removing, the received STBC-OFDM-IDMA sym-

bol from each user should be written as follows:

Ru
∆
= [Ru(0), . . . , Ru(n) . . . , Ru(K − 1)]

= Eu,1hu,1Xu,1 + Eu,2hXu,2 (3.27)

where Eu,p = diag
[

1, ej2πǫu,p/K , . . . , ej2π(K−1)ǫu,p/K
]

, ǫu,p is the normalized CFO

and hu,p is the channel circulant matrix defined as follows (See chapter 1 in
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section 1.4.2.2):

hu,p =




















hu,p(0) 0 . . . hu,p(Lu,p − 1) . . . hu,p(1)

hu,p(1) hu(0)
. . . 0

. . . hu,p(2)
...

. . . . . . . . . . . .
...

hu,p(Lu − 1) hu,p(Lu,p − 2)
. . . 0

. . . 0

0 hu,p(Lu − 1)
. . . hu,p(0)

. . .
...

...
. . . . . . . . . . . .

...
0 0 . . . hu,p(Lu,p − 2) . . . hu,p(0)




















(3.28)

Finally, the received signal at the BS is a superposition of the contributions from

the U active users:

R
∆
= [R(0, . . . , R(n) . . . , R(K − 1)]

=
U∑

u=1

Ru + B(n) (3.29)

where B(n) is a zero-mean AWGN noise vector with covariance matrix IKσ2
B. As

in section 3.2, the CP-OFDM is performed without any CFO correction. Then,

after some manipulations (See section 3.2), the received samples r(k) and r(k+1)

can be expressed can be expressed as:

r(k) =
U∑

u=1

{H
(eq)
u,1 (k)Su(k) + H

(eq)
u,2 (k)Su(k + 1)} + ICI(k) + b(k)

r(k + 1) =
U∑

u=1

{−H
(eq)
u,1 (k + 1)S∗

u(k + 1) + H
(eq)
u,2 (k + 1)S∗

u(k)}

+ ICI(k + 1) + b(k + 1)

where H(eq)
u,p (k) = F(ǫu,p)Hu,p(k) for p ∈ {1, 2} and ICI(k) is a zero-mean Gaus-

sian ICI with variance σ2
ICI = E{|ICI(ǫ, k)|2} caused by all the CFOs. In addi-

tion,

b(k) =
∑K−1

n=0 B(n)e− j2πnk

K , F(ǫu,p) is defined in (3.5) and

Hu,p(k) =
Ls,p−1
∑

l=0

hu,p(l)e− j2πlk

K forp ∈ {1, 2} (3.30)

In the following, we show that the transmitted bits can be recovered by taking

into account the ICI characteristics in the IDMA receiver. As it is necessary to
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know the values of CFOs and the CSIs at the IDMA receiver, the estimation of

these vectors is presented in the next subsection.

3.3.2 Multiple CFO and Channel Estimation

Let us define the vector x(n) of size U = 2(U + L), which is the state vector of

the system (3.29):

x(n) =
[

ǫ(n) Re {h(n)} Im {h(n)}
]T

(3.31)

Now let us introduce the state-space representation1 of the system estimate the

CFO and the channel:

State equation:

x(n) = x(n − 1) + w(n) ∀ n ∈ [0, K − 1] (3.32)

Measurement equation:

Y(n) = C(n, x(n)) + B(n) ∀ n ∈ [0, K − 1] (3.33)

where w(n) is an AWGN matrix with zero-mean and covariance matrix σ2
wIU,

Y(n) is the observation 2 × 1 vector that stores the real and the imaginary parts

of the STBC-OFDM-IDMA symbol R(n), B(n) is an AWGN matrix with zero-

mean and covariance matrix σ2
BI2.

The SPKF detailed in appendix E is used to estimate the CFOs and the chan-

nels. After the time synchronization and CP removing, the CFOs and channels

are estimated. Then, the OFDM demodulation is performed without any CFO

correction and the obtained samples are inserted in the MRC receiver presented

in the next subsection.

3.3.3 Maximum Ratio Combining Operations

Given the estimates of the CFOs and the channels, we can obtain the value of

Ĥ(eq)
u,p . Assume that Su(k) and Su(k + 1) are two successive symbols. Then, Ŝu(k)

1As in section 3.2.1, the state-space representation represents what happens during one

STBC-OFDM-IDMA frame.
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and Ŝu(k + 1) are the decisions obtained by the MRC of two successive received

symbols r(k) and r(k + 1), and the channel frequency responses Ĥ(eq)
u [Alam 98]:

Ŝu(k) =
U∑

u′=1

{Ĥ
(eq)∗
u,1 (k)Ĥ

(eq)
u′,1 (k) + Ĥ

(eq)
u,2 (k + 1)Ĥ

(eq)∗
u′,2 (k + 1)}Su(k)

+
U∑

u′=1

{Ĥ
(eq)∗
u,1 (k)Ĥ

(eq)
u′,2 (k) − Ĥ

(eq)
u,2 (k + 1)Ĥ

(eq)∗
u′,1 (k + 1)}Su(k + 1)

+ Ĥ
(eq)∗
u,1 (k){ICI(ǫ, k) + b(k)} + Ĥ

(eq)
u,2 (k + 1){ICI∗(ǫ, k + 1) + b∗(k + 1)}

(3.34)

Ŝu(k + 1) =
U∑

u′=1

{Ĥ
(eq)
u,1 (k + 1)Ĥ

(eq)∗
u′,1 (k + 1) + Ĥ

(eq)∗
u,2 (k)Ĥ

(eq)
u′,2 (k)}Su(k + 1)

+
U∑

u′=1

{Ĥ
(eq)∗
u,2 (k)Ĥ

(eq)
u′,1 (k) − Ĥ

(eq)
u,1 (k + 1)Ĥ

(eq)∗
u′,2 (k + 1)}Su(k)

+ Ĥ
(eq)∗
u,2 (k){ICI(ǫ, k) + b(k)}

+ Ĥ
(eq)
u,1 (k + 1){ICI∗(ǫ, k + 1) + b∗(k + 1)}∗

(3.35)

Then, the values Ŝu(k) and Ŝu(k + 1) are inserted in the ESE presented in the

next subsection.

3.3.4 Modified Elementary Signal Estimator

Then, given the outputs of the MRC Ŝ(k) and Ŝ(k + 1), the values of Ĥ(eq)
u (k),

the additive-noise variance σ2
B, the ICI variance σ2

ICI and gESE
u (k), the IDMA

reception is performed.

It should be noted that (3.34) and (3.35) can be rewritten as:

Ŝu(k) = {||Ĥ(eq)
u,1 (k)||2 + ||Ĥ(eq)

u,2 (k + 1)||2}Su(k) + ςu(k)

Ŝu(k + 1) = {||Ĥ(eq)
u,1 (k + 1)||2 + ||Ĥ(eq)

u,2 (k)||2}Su(k + 1)

+ςu(k + 1) (3.36)
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and the distortions ςu(k) and ςu(k+1) contained in the output values of the MRC

can be expressed as:

ςu(k) =
U∑

u′=1

u′ 6=u

{Ĥ
(eq)∗
u,1 (k)Ĥ

(eq)
u′,1 (k) + Ĥ

(eq)
u,2 (k + 1)H

(eq)∗
u′,2 (k + 1)}Su(k)

+
U∑

u′=1

u′ 6=u

{Ĥ
(eq)∗
u,1 (k)H

(eq)
u′,2 (k) − Ĥ

(eq)
u,2 (k + 1)H

(eq)∗
u′,1 (k + 1)}Su(k + 1)

+ Ĥ
(eq)∗
u,1 (k){ICI(ǫ, k) + b(k)}

+ Ĥ
(eq)
u,2 (k + 1){ICI∗(ǫ, k + 1) + b∗(k + 1)}

(3.37)

ςu(k + 1) =
U∑

u′=1

u′ 6=u

{Ĥ
(eq)
u,1 (k + 1)H

(eq)∗
u′,1 (k + 1) + Ĥ

(eq)∗
u,2 (k)Ĥ

(eq)
u′,2 (k)}Su(k + 1)

+
U∑

u′=1

u′ 6=u

{Ĥ
(eq)∗
u,2 (k)H

(eq)
u′,1 (k) − Ĥ

(eq)
u,1 (k + 1)H

(eq)∗
u′,2 (k + 1)}Su(k)

+ Ĥ
(eq)∗
u,2 (k){ICI(ǫ, k) + b(k)}

+ Ĥ
(eq)
u,1 (k + 1){ICI∗(ǫ, k + 1) + b∗(k + 1)}

(3.38)

Then, assuming that Su are independent and identically distributed, and applying

the central limit theorem, a Gaussian approximation for ςu(k) and Ŝu(k) can

be considered. Thus, they can be completely characterized by their means and

variances. The modified ESE process for the uth user at the ith iteration generates

the value of the a posteriori LLR as follows:

gESE

u (k) = 2{||Ĥ(eq)
u,1 (k)||2 + ||Ĥ(eq)

u,2 (k)||2} × Ŝu(k) − E(ςu(k))

V ar(ςu(k))
∀u (3.39)

For the initialization process gESE
u (k) = 0 for i = 1, where i denotes the iteration

number with i ∈ {1, . . . , Iidma}, with Iidma the maximum number of iterations.

The outputs of the modified ESE are inserted in the user decoding process pre-

sented in chapter 1 in section 1.4.3.2. Then, at the ith iteration for i < Iidma,

the outputs of the decoding process are the values of gESE
u (k), that are reinserted

in the ESE. The ESE process is again performed. Finally, the decoding process

produces hard decisions to obtain the estimations of the transmitted bits during
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the final iteration Iidma. Figure 3.7 shows the proposed STBC-OFDM-IDMA

scheme.

gESE
1 (k)

gESE
1 (k)

gESE
U

(k)

gESE
U

(k)

MRC

OFDM

demodulation

user

decoding

modified

ESE

SPKF initialization step

Ĥ
(eq)
u

σ2
z = σ2

B + σ2
ICI

ĥ, ǫ

R

r(k)
Ŝ1(k)

ŜU(k)

1st user

estimated

bits

Uth user

estimated

bits

Figure 3.7: Proposed STBC-OFDM-IDMA uplink receiver, where the user de-

coding is the same as in figure 1.20

3.3.5 Simulation Results

Simulation protocol:

We consider an OFDM-IDMA uplink system composed of U = 4 users over

K = 1024 subcarriers. The spreading factor is S = 64. BPSK is used to modulate

the information bits. The carrier frequency is at fc = 2.6GHz and the channel

bandwidth is set to W = 10MHz. We consider that the ENC consists only

of the insertion of a spreading code. We define the SNR= 10log( σ2
u

σ2
B

), where

σ2
u is the mean power of the received signal from the uth user, and the SIR=

10log( σ2
u

σ2
ICI

). We consider a transmission over a normalized Rayleigh slow-fading

frequency selective channel composed of ∀u, p Lu,p = 1, 3 multipaths. The CFOs

are modeled as random variables with a normal distribution with zero-mean and

variance 0.1. The number of iterations is set to 5. The estimations are obtained

using control data of one OFDM-IDMA symbol.

Figure 3.8 shows the CFO estimation performance in terms of MMSE of one user

in the system. The SPKF allows the CFO and the channel of the users to be
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estimated. The MMSE for an AWGN channel and for channels with different

length are presented. The channel estimation for different channel lengths give

the same estimation performance, around 10−2 for a SNR= 0dB. The following
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10
−2

M
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S
E
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SPKF Lu = 3
SPKF Lu = 1
SPKF AWGN

Figure 3.8: CFO estimation performance in terms of MMSE, SIR= 0dB

results are the average of 5000 OFDM-IDMA symbols. Figure 3.9 and 3.10 show

the BER for a transmission over a normalized Rayleigh slow-fading frequency

selective channel with Lu,p = 1 and Lu,p = 3 multipaths ∀u, p respectively. The

efficiency of the OFDM-IDMA-STBC proposed scheme is confirmed, we can see

that for a BER of 10−2 there are less than 1 dB between the curve without CFO

and the curve of the proposed estimator. In addition, we can see a gain of around

3dB of the proposed scheme in comparison with the linear detection method

presented in [Cao 04a].
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Figure 3.9: BER performance for a channel Lu = 1
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Figure 3.10: BER performance for a channel Lu = 3

3.4 Conclusions

In this section, two OFDM-IDMA receivers are proposed. A joint CFO/channel

estimation is performed using a SPKF. Then, the estimated parameters are in-
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serted in an IDMA iterative receiver. The IDMA receiver accurately estimates

the transmitted symbols from all the users; the ICI produced by the CFOs is

canceled, as well as the MAI. The receiver is robust against ISI thanks to the

OFDM modulation and robust against the MAI due to the IDMA scheme. Un-

like common approaches, the IDMA schemes also allow the CFO correction step

to be skipped.

OFDM-IDMA systems allow a large number of users to transmit at the same

time. We show that the proposed receiver outperforms existing CFO correction

methods such as [Cao 04a].

In chapter 1, we mentioned that CR systems may be one solution to the problem

induced by the exponential growth of the number of users in the system. As an

alternative, OFDM-IDMA could be a solution to the overload produced by the

constant increase of the user density per cell in cellular systems.
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Estimating the CFOs and channels plays a key role in the design of mobile wire-

less systems. In this PhD, our purpose was to create new receiver schemes that

take into account both phenomena. We have proposed to jointly estimate the

CFOs and the channels for an OFDMA uplink system by using a recursive ap-

proach [Pove 10]. On the one hand, the EKF, the SOEKF, the IEKF and the

SPKF including the UKF and the CDKF were considered. On the other hand,

to relax the Gaussian assumptions on the model noise and measurement noise,

the “extended H∞ filter” and the “unscented H∞ filter” were studied.

From the estimation point of view, we first compared the different Kalman tech-

niques. We can draw the following conclusions:

1/ The SOEKF gives slightly “better” estimates of the CFO and the channels

than the EKF in terms of estimation accuracy. Nevertheless, the computational

cost of the SOEKF is higher than the EKF one, due to the calculation of the

Hessian matrix for the second-order expansion.

2/ Concerning the SPKF, the UKF and the CDKF give the same results in terms

of estimation accuracy. In addition, their computational costs are quite similar.

They converge faster than the EKF and the SOEKF. They have the advantage

of avoiding the calculation of Jacobians and Hessians matrices, but the Cholesky

factor of the autocorrelation matrices must be computed.

3/ The IEKF gives the “best” estimation performance in terms of estimation

accuracy and convergence speed. It needs less samples to converge to the true

value than the other Kalman approaches. However, due to the calculation of the

Jacobian matrix at each iteration, the computational complexity is the highest

among the proposed approaches.

Let us now look at the relevance of the H∞ approaches.

1/ the “unscented H∞ filter” gives better estimation performance than the “ex-

tended H∞ filter”. In addition, its convergence is faster than the one of the

“extended H∞ filter”.

2/ when the noise characteristics are available, the “extended H∞ filter” and the
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EKF give similar results. In addition, there is no real difference between the “un-

scented H∞ filter” and the SPKF. If the noise variances are a priori unknown,

the H∞ approaches converge faster than the Kalman algorithms. Nevertheless,

the noise attenuation level and the weighting matrices have to be chosen by the

practitioner. If the noise attenuation level is set to a value that is too small, a

solution to the H∞ issue may not exist. If the noise attenuation level is set to a

high value to guarantee the existence of a solution, the resulting H∞ filter “looks

like” the Kalman filter.

3/ The computational complexity of the “extended H∞ filter” is slightly higher

than the EKF while the computational cost of the “unscented H∞ filter” is slightly

higher than the SPKF.

Then, the above techniques have been compared with the EM-based algorithms

proposed in [Pun 04a] and in [Pun 06] in terms of estimation accuracy and com-

putational complexity. Even if the EM-based estimator gives better estimation

performance, its computational complexity is much higher than the costs of the

SPKF and the “unscented H∞ filter”. Our methods are therefore very useful for

practical cases.

Based on the above considerations, we think that the SPKF gives the best com-

promise in terms of estimation performance, computational complexity and a

priori information to be tuned.

From the digital communication point of view, the above optimal filtering tech-

niques have been combined with an MMSE-SD to obtain a non-pilot aided CFO

estimator for an OFDMA uplink [Pove 09a], [Pove 09b], [Pove 11c]. The MAI

suppression scheme followed by the CFO estimation algorithm based on optimal

filtering can jointly estimate and detect each user’s CFO and symbols respectively.

According to the simulations we carried out, the proposed scheme can effectively

suppress the MAI caused by a relatively large CFO, and it is sufficiently robust

to CFO variations. The iterative decoding applies simple hard interference can-

cellation techniques, resulting in a moderate complexity.

Then, the SPKF has been chosen to be combined with two statistical tests: the
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BHT and the CUSUM test [Pove 11b], [Pove 11d] to detect the beginning and

the end of a CR-NBI disturbing the estimation of the CFOs and the channels of

different users in a PU-OFDMA system. The proposed estimator operates in the

time domain unlike other approaches such as [More 08] that estimate the CFO

in presence of an NBI in the frequency domain. By using a SPKF and without

increasing the computational complexity, we take advantage of the innovation in

the Kalman filter to detect the CR-NBI. When using the BHT, better perfor-

mance are obtained in terms of the CR-NBI probability of detection. However,

when using the CUSUM, better performance in terms of PU probability of detec-

tion are obtained. The results show that the SPKF without the statistical tests is

not able to estimate the CFO of each user. The proposed estimator outperforms

the existing CFO estimation methods such as [More 08] in presence of NBI and

it is robust to the NBI power. Nevertheless, the architecture is sensitive to the

duration in time of the CR-NBI.

We have also proposed to combine the SPKF with a modified version of an itera-

tive IDMA receiver to design a new OFDM-IDMA receiver [Pove 12]. Simulation

results show that the SPKF provides “accurate” estimations of the CFO and the

channel of each user. In addition, the modified OFDM-IDMA receiver accurately

estimates the transmitted bits of each user, by taking into account the estima-

tions of the SPKF and the interference produced by the CFO. According to the

simulation tests we carried out, our receiver outperforms CFO correction meth-

ods proposed for other multicarrier systems such as [Cao 04a].

Our last contribution consists in combining the SPKF with a STBC and a new

variant of an iterative IDMA receiver to take advantage of the space diversity

[Pove 11a]. The simulation results confirm that the SPKF provides accurate es-

timations of the CFO and the channel. In addition, the STBC-OFDM-IDMA

receiver can accurately estimate the transmitted bits of each user. We show

that the proposed receiver outperforms existing CFO correction methods such as

[Cao 04a].

Currently, we are working on the sensitivity analysis of the optimal filtering

techniques in the non-linear case. We are studying the local sensitivity of the

Kalman filtering and the H∞ filtering regarding perturbations. For this purpose
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we take advantage of appendix C.

In the future, we propose to address the estimation issue by using a quadra-

ture Kalman filter (QKF) [Ito 00], which avoids the linearization step by using

the Gauss-Hermite numerical integration rule. In addition, the relevance of the

“second-order H∞ filter” [Hu 11] could be investigated.

In this PhD, some assumptions have been made. For instance, we suppose that

the radio-frequency (RF) power amplifier (PA) is used below its saturation point

to guarantee a linear behavior of the PA. However, this may lead to a poor power

efficiency, especially when the transmitted signal exhibits high PAPR1. One so-

lution would be to use the PA closer to its saturation point, but this induces

nonlinear distortion of the transmitted signal. In [Roli 09], non-linear models for

the PA such as the Volterra model can be considered. In the future, we could

design new architectures to compensate the influence of these non-linearities.

In addition, in the future we propose to investigate an OFDM-IDMA with a suf-

ficiently long CP that allows a transmission in an asynchronous way. We could

study this non-optimal characteristic from a point of view of the spectral efficiency

to allow all the users to use the same interleaver.

1Due to the large number of independent modulated subcarriers that are added up coher-

ently, the transmitted signal exhibits a high PAPR.
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AppendixA
Kalman Filter - Linear Case

Firstly presented in [Kalm 60] by Rudolf E. Kalman, the Kalman filter (KF) is

based on a state-space representation of the system. It has been used in a wide

range of applications, from speech enhancement to time-varying autoregressive

parameters tracking, from biomedical applications to mobile communications.

It uses two equations to describe the system. When the state-space equations

are linear and the noises are additive white zero-mean Gaussian processes, they

satisfy:

State equation:

x(n) = Φ(n − 1)x(n − 1) + Γw(n) (A.1)

Measurement equation:
y(n) = Ψ(n)x(n) + b(n) (A.2)

where x(n) is the state vector1 of size U at time n and y(n) is the measurement

vector of size K at time n. The model noise w and the observation noise b are

uncorrelated white zero-mean Gaussian vectors with covariance matrices assumed

to be Q = σ2
wIU and R = σ2

b IK respectively. In addition, Φ(n−1) is the transition

matrix of size U × U from time n − 1 to n, Γ is the input gain matrix of size

U × U and Ψ(n) is the measurement matrix K × U at time n.

The KF operates in two steps: the prediction step and the filtering step.

In the prediction step, the KF uses the estimated state at the previous instant to

estimate the current state, without taking into account the current observation.

This is the so-called a priori estimation of the state vector defined as follows:

x̂(n|n − 1) = E [x(n)|y(0), y(1), . . . , y(n − 1)] (A.3)

1The state vector stores the set of parameters of the system, necessary for prediction when

the input is known. In practical cases, it usually contains the unknown quantities to be esti-

mated.
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Figure A.1: Kalman filter - system model

Given (A.1) and (A.3) and as w is a zero-mean AWGN, the a priori estimation

of the state vector can be expressed as follows:

x̂(n|n − 1) = Φ(n − 1)x̂(n − 1|n − 1) (A.4)

where x̂(n − 1|n − 1) is the estimation of the state vector at time n − 1 given the

set of observations [y(0), y(1), . . . , y(n − 1)].

Then, let us introduce the a priori estimation error:

x̃(n|n − 1) = x(n) − x̂(n|n − 1) (A.5)

and its corresponding covariance matrix P(n|n − 1) defined by:

P(n|n − 1) = E

[

x̃(n|n − 1)x̃H(n|n − 1)
]

(A.6)

Given (A.1) and (A.4), the a priori estimation error of the state vector can be

rewritten as:

x̃(n|n − 1) = Φ(n − 1)x(n − 1) + Γw(n) − Φ(n − 1)x̂(n − 1|n − 1)

= Φ(n − 1)x̃(n − 1|n − 1) + Γw(n)
(A.7)

Then, the covariance matrix of x̃(n|n − 1) satisfies:

P(n|n − 1) = Φ(n − 1)E
[

x̃(n − 1|n − 1)x̃H(n − 1|n − 1)
]

ΦH(n − 1)

+ ΓE
[

w̃(n)w̃H(n)
]

ΓH

= Φ(n − 1)P(n − 1|n − 1)ΦH(n − 1) + ΓQΓH

(A.8)

132



A. Kalman Filter - Linear Case

At that stage, the filtering step uses the current observation to correct the a

priori estimated state vector, in order to obtain the a posteriori estimation. To

estimate the current state and by following the kind of update equation obtained

in the RLS algorithm, one has:

x̂(n|n) = x̂(n|n − 1) + K(n)ỹ(n) (A.9)

where K(n) is the Kalman gain and ỹ(n) is the innovation defined as:

ỹ(n) = y(n) − ŷ(n|n − 1)

= y(n) − Ψ(n)x̂(n|n − 1)
(A.10)

with ŷ(n|n − 1) the prediction of y(n) based on x̂(n|n − 1).

The Kalman gain is defined to obtain the MMSE estimation of the state vector.

This means that:

∂
(

E

[

xH(n|n)x(n|n)
])

∂K(n)
=

∂tr(P(n|n))

∂K(n)
= 0 (A.11)

and it satisfies:

K(n) = {Pxy(n)}{Pyy(n)}−1 (A.12)

where Pyy(n) is the innovation covariance matrix defined as follows:

Pyy(n) = Ψ(n)P(n|n − 1)ΨH(n) + R (A.13)

and Pxy(n) is the cross-covariance matrix between y(n) and the state prediction

x̂(n|n − 1) defined as:

Pxy(n) = P(n|n − 1)ΨH(n) (A.14)

Finally, by combining (A.9) and (A.12) it can be easily shown that the error

estimation covariance matrix is updated as follows:

P(n|n) = P(n|n − 1) − K(n)Ψ(n)P(n|n − 1)

= {IU − K(n)Ψ(n)}P(n|n − 1)
(A.15)

Given (A.8) adjusted to the set of observations {y(1), . . . , y(n)} instead of

{y(1), . . . , y(n − 1)}, (A.12) and (A.15), the error estimation covariance matrix

133



A. Kalman Filter - Linear Case Appendix A

satisfies the following Riccati equation1 for the Kalman filter:

P(n + 1|n) =
(A.8)

Φ(n)P(n|n)ΦH(n) + ΓQΓH

=
(A.15)

Φ(n){IU − K(n)Ψ(n)}P(n|n − 1)ΦH(n) + ΓQΓH

=
(A.12)

Φ(n){IU − P(n|n − 1)ΨH(n){Ψ(n)P(n|n − 1)ΨH(n) + R}−1

× Ψ(n)}P(n|n − 1)ΦH(n) + ΓQΓH

(A.16)

The Kalman filter can also be derived from a Bayesian MAP perspective [VdMe 04a].

Indeed, (A.3) can be expressed as:

x̂(n|n − 1) =
∫

x(n)P{x(n)|Y(n − 1)}dx(n) (A.17)

where P{x(n)|Y(n − 1)} = P{x(n)|y(0), y(1), . . . , y(n − 1)} is the a priori prob-

ability density of the state vector. As it is Gaussian, it can be completely char-

acterized by its mean and its covariance matrix. Then, by using the Bayes rule

the a posteriori probability density can be obtained as follows:

P{x(n)|Y(n)} = P{x(n)|y(0), y(1), . . . , y(n)}

=
P{Y(n)|x(n)}P{x(n)}

P{Y(n)}

=
P{y(n), Y(n − 1)|x(n)}P{x(n)}

P{y(n), Y(n − 1)}

=
P{y(n)|Y(n − 1), x(n)}P{Y(n − 1)|x(n)}P{x(n)}

P{y(n)|Y(n − 1)}P{Y(n − 1)}

=
P{y(n)|Y(n − 1), x(n)}P{x(n)|Y(n − 1)}P{Y(n − 1)}P{x(n)}

P{y(n)|Y(n − 1)}P{Y(n − 1)}P{x(n)}

=
P{y(n)|x(n)}P{x(n)|Y(n − 1)}

P{y(n)|Y(n − 1)}
(A.18)

Then, maximizing P{x(n)|Y(n)} consists in maximizing the numerator of (A.18).

1The Riccati equation is defined as: P = A{I − PBH(BPBH + R)−1B}PAH + Q.
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The H∞ approach was introduced in the field of control in 1981 [Zame 81]. A

solution of the H∞ estimation problem can be based on polynomial decompo-

sition techniques [Grim 90]. Nevertheless, they lead to equations with high-

computational cost that cannot be used in practical situations. As an alternative

solution, state-space approaches have emerged. In [Gero 99], the author presents

a solution of the H∞ estimation constraint, based on the resolution of a convex

optimization problem under linear matrix inequality constraints approaches. In

[Shak 92], Shaked et al. present a state-space approach solution based on the

resolution of a quadratic Riccati-type equation. This algorithm is easy to imple-

ment and has a lower computational cost than the above approaches.

The H∞ filter has been widely used in the field of control. For the last 12 years,

several studies have been conducted by the signal processing community.

In [Shen 99], instead of using a Kalman filtering, Shen et al. suggest using an

H∞ filter to enhance a speech signal disturbed by an additive noise and recorded

from a single microphone. For this purpose, the signal is assumed to be modeled

by an AR process. However, the AR parameters are unknown and hence need

to be estimated. Shen et al. propose to estimate them directly from the noisy

observations by using a second H∞ filter. Therefore, the resulting AR parameter

estimates are biased, as pointed out by Labarre et al. in [Laba 05], who inves-

tigated the relevance of the H∞ filtering for speech enhancement. To avoid the

problem of biased AR parameter estimates that can be obtained in [Shen 99],

Labarre et al. suggest estimating both the AR model and its parameters. Al-

though this leads to a non-linear estimation issue, they have developed a structure

based on two mutually interactive standard H∞ filters [Laba 07]. The first one

aims at estimating the AR model, while the second one updates the estimation

of the AR parameters. In addition, in [Jamo 07a], the authors take advantage
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of the two mutually interactive H∞ filter based approach to jointly estimate the

fading channel and its AR parameters. However, the authors do not obtain better

performance than a KF based method.

Let us now look more carefully at the H∞ filtering approach. Given the state-

space model in (A.1) and (A.2), let us introduce a third state-space equation to

focus on a linear combination of the state-vector components:

z(n) = Lx(n) (B.1)

where L is a linear transformation operator that can be either a matrix of size

U × U or a row vector of size U . z(n) is hence a vector or a scalar.

Given (A.1), (A.2), (B.1) and figure B.1, the H∞ filtering provides the estimation

of the state vector, by minimizing the H∞ norm of the transfer operator that

maps the discrete-time noise disturbances1 to the estimation error, as follows:

J∞ = sup

∑Nob−1
n=0 ‖e(n)‖2

V
−1∑Nob−1

n=0 ‖b(n)‖2 + W
−1∑Nob−1

n=0 ‖w(n)‖2 + eH(n)P(0)e(n)
(B.2)

where N ob denotes the number of available observations, e(n) = z(n) − ẑ(n), and

V and W are positive weighting matrices tuned by the practitioner to achieve

performance requirements.

Transfer operator

V
− 1

2 (n)b(n)

W
− 1

2 (n)w(n)
P(0)e(0)

e(n) = z(n) − ẑ(n)

Figure B.1: Transfer operator from disturbances to estimation error for H∞-norm

based estimation

1Namely w(n), b(n) and the initial conditions on the state vector.
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Since the minimization of (B.2) is often impossible, the following sub-optimal

H∞ problem is usually considered:

J∞ < Ξ2 (B.3)

where Ξ2 is the prescribed noise attenuation level.

At that stage, P∞(n + 1|n) satisfies the following Riccati equation for the H∞

filter:

P∞(n + 1|n) = Φ(n)P∞(n|n)ΦH(n) + ΓWΓH (B.4)

= Φ(n)P∞(n|n − 1){IU −
[

ΨH(n) L
H
]

×M
−1

[

Ψ(n)
L

]

P∞(n|n − 1)}ΦH(n) + ΓWΓH

where

M =

[

V 0
0 −Ξ2IU

]

+

[

Ψ(n)
L

]

P∞(n|n − 1)
[

ΨH(n) L
H
]

=

[

Ψ(n)P∞(n|n − 1)ΨH(n) + V Ψ(n)P∞(n|n − 1)LH

LP∞(n|n − 1)ΨH(n) LP∞(n|n − 1)LH − Ξ2IU

] (B.5)

Remark: if L = IU , one has:

M =

[

Ψ(n)P∞(n|n − 1)ΨH(n) + V Ψ(n)P∞(n|n − 1)
P∞(n|n − 1)ΨH(n) P∞(n|n − 1) − Ξ2IU

]

(B.6)

When using the H∞ filter, the state vector can be estimated recursively as follows:

x̂(n|n) = x̂(n|n − 1) + K∞(n)ỹ(n) (B.7)

where K∞(n) is the H∞ filter gain defined as:

K∞(n) = {Pxy∞(n)}{Pyy∞(n)}−1 (B.8)

where Pyy∞(n) is defined as follows:

Pyy∞(n) = Ψ(n)P∞(n|n − 1)ΨH(n) + V (B.9)

and Pxy∞(n) is:

Pxy∞(n) = P∞(n|n − 1)ΨH(n) (B.10)
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(B.4) is true provided that:

P∞(n + 1|n)−1 + ΨH(n)Ψ(n) − Ξ−2L
H
L > 0 (B.11)

It should be noted that the purpose of the H∞ filter is to minimize the peak error

power in the frequency domain whereas the Kalman filter minimizes the average

error power [Grim 90].
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Kalman Filter vs H∞ Filter

In this appendix, our purpose is to compare the H∞ filter and the KF in the linear

case when estimating model parameters, by comparing the Ricatti equations of

both algorithms. To our knowledge, there is no work dealing with this kind of

comparison.

Let us first assume that:

P∞(n|n − 1) = P(n|n − 1) (C.1)

and

L = IU (C.2)

In addition, as it is often done when dealing with H∞ filter in signal processing,

let us set W and V to Q and R respectively. This implies that:

K∞(n) = K(n) (C.3)

and

Pyy∞(n) = Pyy(n) (C.4)

Then, let us compare P∞(n + 1|n) and P(n + 1|n). For this purpose, the matrix

M defined in (B.6) must be inverted in (B.4). Among the approaches that could

be considered such as the matrix inversion lemma, we suggest using the one based

on the Schur complement [Brez 88] for the sake of simplicity1. Indeed by defining

1M =

[

A B

C D

]

, then M−1 =

[

IK −A−1B

0 IU

][

A−1 0

0 S−1

][

IK 0

−CA−1 IU

]

where A is matrix of size K × K, B is matrix of size K × U , C is matrix of size U × K, D is

matrix of size U × U , S = D − CA−1B is the Schur complement of A in M and 0 is a zero

matrix.
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Υ(n) the Schur complement of Pyy∞(n) in M as follows:

Υ(n) = {P∞(n|n − 1) − Ξ2IU}
− P∞(n|n − 1)ΨH(n){Pyy∞(n)}−1Ψ(n)P∞(n|n − 1) (C.5)

Given (A.12), (A.13), (A.15), (C.1) and (C.4), one obtains:

Υ(n) =
(C.1),(C.4)

P(n|n − 1)

− {P(n|n − 1)ΨH(n){Pyy(n)}−1}Ψ(n)P(n|n − 1) − Ξ2IU

=
(A.12),(A.13)

P(n|n − 1) − K(n)Ψ(n)P(n|n − 1) − Ξ2IU

=
(A.15)

P(n|n) − Ξ2IU (C.6)

Then given the previous footnote, M−1 can be expressed as the product of three

matrices, the coefficients of which are defined from the coefficients of M and the

Schur complement Υ(n) as follows:

M
−1 =

[

IK −KH(n)
0 IU

] [

{Pyy(n)}−1 0
0 Υ−1

] [

IK 0
−K(n) IU

]

= W(n)X(n)Y(n) (C.7)

At that stage, given (C.7), we can rewrite the Riccati recursion (B.4) as:

P∞(n + 1|n) = Φ(n)P(n|n − 1)ΦH(n) + ΓQΓH (C.8)

−Φ(n)P(n|n − 1)
[

ΨH(n) IU

]

W(n)X(n)Y(n)

[

Ψ(n)
IU

]

P(n|n − 1)ΦH(n)

= Φ(n)P(n|n − 1)ΦH(n) + ΓQΓH − Φ(n)
[

P(n|n − 1)ΨH(n) P(n|n)
]

×
[

{Pyy(n)}−1 0
0 Υ−1

] [

Ψ(n)P(n|n − 1)
P(n|n)

]

ΦH(n)

Using (A.12), (A.15) and (C.6), this leads to:

P∞(n + 1|n) = Φ(n)P(n|n − 1)ΦH(n) + ΓQΓH (C.9)

−Φ(n)
[

P(n|n − 1)ΨH(n){Pyy(n)}−1 P(n|n)Υ−1
]
[

Ψ(n)P(n|n − 1)
P(n|n)

]

ΦH(n)

=
(A.12)

Φ(n)P(n|n − 1)ΦH(n) − Φ(n)K(n)Ψ(n)P(n|n − 1)ΦH(n)

−Φ(n)P(n|n)Υ−1P(n|n)ΦH(n) + ΓQΓH

=
(A.15),(C.6)

Φ(n)P(n|n)ΦH(n) − Φ(n)P(n|n){P(n|n) − Ξ2IU}−1P(n|n)ΦH(n) + ΓQΓH
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Hence, the solution of the Riccati equation when using the H∞ filter satisfies:

P∞(n + 1|n) = Φ(n)P(n|n)ΦH(n) + Q
Ξ(n) + ΓQΓH=Φ(n)P(n|n)ΦH(n) + Q

Ξw

where

QΞ(n) = −Φ(n)P(n|n){P(n|n) − Ξ2IU}−1P(n|n)ΦH(n) (C.10)

Given, (A.16) and (C.10), one has

P∞(n + 1|n) = P(n + 1|n) + Q
Ξ(n) (C.11)

Therefore, H∞ filtering can be seen as a Kalman filtering with a model-noise

covariance matrix equal to Q
Ξw = Q

Ξ(n) + ΓQΓH .

For parameter tracking, the larger the coefficients of the state-noise covariance

matrix are, the easier it is to track the parameter variations, especially when the

parameters are subject to abrupt variations. Nevertheless, the larger they are,

the larger the variance of the estimated parameters over time is.

At that stage, let us introduce the eigenvalue decomposition of P(n|n):

P(n|n) = G












λ1 0 · · · · · · 0
0 λ2 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 0 · · · 0 λU












G−1

where {λu}u∈{1,2,...,U} are the eigenvalues of P(n|n). Hence, one has:

P(n|n) − Ξ2IU = G












λ1 − Ξ2 0 · · · · · · 0
0 λ2 − Ξ2 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 0 · · · 0 λU − Ξ2












G−1

Therefore:

Q
Ξ(n) = Φ(n)G














− λ1
2

λ1−Ξ2 0 · · · · · · 0

0 − λ2
2

λ2−Ξ2 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0

0 0 · · · 0 − λU
2

λU −Ξ2














(Φ(n)G)H (C.12)
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where {− λu
2

λu−Ξ2 }u∈{1,2,...,U} are the eigenvalues of QΞ(n).

It should be noted that when Ξ tends to +∞, QΞ(n) tends to be a zero matrix and

P∞(n + 1|n) tends to P(n + 1|n).

If Ξ2 > λu, for u ∈ {1, 2, . . . , U}, QΞ(n) is a positive-definite matrix. Therefore,

the solution to the Ricatti equation for the H∞ filter can be seen as an upper

bound of the Kalman a priori error covariance matrix.
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AppendixD
Extended Kalman Filter Approaches

When considering a non-linear system, the EKF consists in analytically propa-

gating the estimation through the system dynamics, by means of a first-order

linearization using Taylor expansion [Hayk 96].

The non-linear state-space equations that describe the system are:

State equation:

x(n) = Φn (x(n − 1)) + Γw(n) (D.1)

Measurement equation:

y(n) = Ψn(x(n)) + b(n) (D.2)

where Φn and Ψn are non-linear functions. As in appendix A, x(n) is the state

vector of size U at time n and y(n) is the measurement vector of size K at time

n. The noises w(n) and b(n) are additive white zero-mean Gaussian processes

with covariance matrices Q = σ2
wIU and R = σ2

b IK respectively. In addition, Γ is

the input gain matrix of size U × U .

Then, the first-order Taylor expansion of (D.1) around x̂(n − 1|n − 1) is:

Φn(x(n − 1)) ≈ Φn(x̂(n − 1|n − 1))

+ ∇Φn|x̂(n−1|n−1){x(n − 1) − x̂(n − 1|n − 1)}
≈ Φn(x̂(n − 1|n − 1)) + ∇Φn|x̂(n−1|n−1)x(n − 1)

− ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1)

(D.3)

where ∇Φn|x̂(n−1|n−1) is the Jacobian matrix of Φn evaluated for x̂(n − 1|n − 1).

Given (D.3), (D.1) can be rewritten as follows:

x(n) = Φn(x̂(n − 1|n − 1)) + ∇Φn|x̂(n−1|n−1)x(n − 1)

− ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1) + Γw(n)
(D.4)
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Given (A.3) and (D.4), the a priori estimation of the state vector is defined as

follows:

x̂(n|n − 1) = Φn(x̂(n − 1|n − 1))

+ ∇Φn|x̂(n−1|n−1)E [x(n − 1)|y(0), y(1), . . . , y(n − 1)]

− ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1)}
+ ΓE [w(n)|y(0), y(1), . . . , y(n − 1)]

(D.5)

As w(n) is a white zero-mean Gaussian process, (D.5) can be rewritten as:

x̂(n|n − 1) = Φn(x̂(n − 1|n − 1))

+ ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1)

− ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1)

(D.6)

So, the a priori estimation of the state vector satisfies:

x̂(n|n − 1) = Φn(x̂(n − 1|n − 1)) (D.7)

Thus, given (D.4) and (D.7), the a priori error estimation can be defined as:

x̃(n|n − 1) = x(n) − x̂(n|n − 1)

= Φn(x̂(n − 1|n − 1)) + ∇Φ|x̂(n−1|n−1)x(n − 1)

− ∇Φn|x̂(n−1|n−1)x̂(n − 1|n − 1) + Γw(n) − Φn(x̂(n − 1|n − 1))

= ∇Φn|x̂(n−1|n−1)x̃(n − 1|n − 1) + Γw(n)
(D.8)

and its corresponding covariance matrix P(n|n − 1) is defined by:

P(n|n − 1) = ∇Φn|x̂(n−1|n−1)P(n − 1|n − 1)∇ΦH
n |x̂(n−1|n−1) + ΓQΓH (D.9)

It should be noted the a priori estimation of the state vector (D.7) does not

depend on the Jacobian matrix ∇Φn|x̂(n−1|n−1). However, ∇Φn|x̂(n−1|n−1) is re-

quired to calculate the a priori error estimation covariance matrix P(n|n − 1).

Now, let us focus our attention on the a posteriori estimation of the state vector.

For this purpose, it is necessary to calculate the first-order Taylor expansion of

(D.2) around x̂(n|n − 1) as follows:

Ψn(x(n)) ≈ Ψn(x̂(n|n − 1)) + ∇Ψn|x̂(n|n−1){x(n) − x̂(n|n − 1)} (D.10)
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where ∇Ψn|x̂(n|n−1) is the Jacobian matrix of Ψn evaluated for x̂(n|n − 1).

Then, given (D.2) and (D.10), the innovation can be expressed as:

y(n) − Ψn(x̂(n|n − 1)) ≈ Ψn(x(n)) + b(n)

− Ψn(x(n)) + ∇Ψn|x̂(n|n−1){x(n) − x̂(n|n − 1)}
≈ ∇Ψn|x̂(n|n−1){x(n) − x̂(n|n − 1)} + b(n)

(D.11)

When looking at the linear case and more particularly (A.10), the innovation is

defined as follows:

y(n) − Ψ(n)x̂(n|n − 1) = Ψ(n){x(n) − x̂(n|n − 1)} + b(n) (D.12)

A similarity can be noticed between (D.11) and (D.12). The EKF can be hence

easily derived. The way the state-vector estimation can be updated and the

definition of the Kalman gain can be obtained similarly as in appendix A, by

replacing Ψ(n) by ∇Ψn|x̂(n|n−1).

Thus, to obtain the a posteriori estimation of the state vector, one has:

x̂(n|n) = x̂(n|n − 1) + K(n){y(n) − Ψn(x̂(n|n − 1))} (D.13)

where K(n) is the Kalman gain defined by:

K(n) = {Pxy(n)}{Pyy(n)}−1 (D.14)

with Pyy(n) the innovation covariance matrix defined as follows:

Pyy(n) = ∇Ψn|x̂(n|n−1)P(n|n − 1)∇ΨH
n |x̂(n|n−1) + R (D.15)

x̂(n|n)x̂(n − 1|n − 1) x̂(n|n − 1)

(D.7) (D.13)

K(n)y(n)

Figure D.1: EKF
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and Pxy(n) the cross-covariance matrix between y(n) and the state prediction

x̂(n|n − 1) defined as:

Pxy(n) = P(n|n − 1)∇ΨH
n |x̂(n|n−1) (D.16)

Figure D.1 shows the block scheme of the EKF.

Finally, by combining (D.13) and (D.14), it can be easily shown that the estima-

tion error covariance matrix is updated as follows:

P(n|n) = P(n|n − 1) − K(n)∇Ψn|x̂(n|n−1)(n)P(n|n − 1)

= {IU − K(n)∇Ψn|x̂(n|n−1)(n)}P(n|n − 1)
(D.17)

The EKF may sometimes diverge if the first-order approximation is not sufficient

to describe the non-linearity. Therefore, a second-order approximation can be

used and leads to the SOEKF [Bar 01]. It is still based on a Taylor expansion,

but a second-order expansion is considered.

Given the state-space equations in (D.1) and (D.2), let us look at the second-order

Taylor expansion of (D.1) around x̂(n − 1|n − 1):

Φn(x(n − 1)) ≈ Φn(x̂(n − 1|n − 1))

+ ∇Φn|x̂(n−1|n−1){x(n − 1) − x̂(n − 1|n − 1)} +
1

2
Φn

≈ Φn(x̂(n − 1|n − 1)) + ∇Φn|x̂(n−1|n−1)x̃(n − 1|n − 1) +
1

2
Φn

(D.18)

where ∇Φn|x̂(n−1|n−1) is the Jacobian matrix of Φn evaluated at x̂(n − 1|n − 1)

and

Φn =
U∑

u=1

ΘΦ
u {x(n − 1) − x̂(n − 1|n − 1)}H ∂2Φn,u

∂x2(n)
|x̂(n−1|n−1)

× {x(n − 1) − x̂(n − 1|n − 1)}

=
U∑

u=1

ΘΦ
u Φn,u

(D.19)

where Φn,u is the uth element of Φn(x(n)) and ΘΦ
u is a U × 1 vector with zeros

everywhere except for the uth element which is equal to 1.
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Remark 1: The uth quadratic term of Φn can expressed as follows:

Φn,u = tr{ ∂2Φn,u

∂x2(n)
|x̂(n−1|n−1)

× {x(n − 1) − x̂(n − 1|n − 1)}{x(n − 1) − x̂(n − 1|n − 1)}H}
= tr{{x(n − 1) − x̂(n − 1|n − 1)}{x(n − 1) − x̂(n − 1|n − 1)}H

× ∂2Φn,u

∂x2(n)
|x̂(n−1|n−1)}

(D.20)

Remark 2: one can approximate the expectation of Φn,u given the set of obser-

vations {y(0), . . . , y(n − 1)} by:

Φ
mean

n,u = E{Φn,u|y(0), . . . , y(n − 1)}

≈ tr{P(n − 1|n − 1)
∂2Φn,u

∂x2(n)
|x̂(n−1|n−1)}

(D.21)

The above approximation of Φ
mean

n,u has the advantage of being “easily” computed

by using P(n − 1|n − 1) and ∂2Φn,u

∂x2(n)
|x̂(n−1|n−1).

Given (D.19) and (D.21), one has:

Φ
mean

n = E{Φn|y(0), . . . , y(n − 1)}

=
U∑

u=1

ΘΦ
u Φ

mean

n,u

(D.22)

By following the same development as in (D.5) and (D.6), the a priori estimation

of the state vector can be obtained as follows:

x̂(n|n − 1) = Φn(x̂(n − 1|n − 1)) +
1

2
Φ

mean

n (D.23)

By assuming that Φ
mean

n ≈ Φn and by combining (D.18) and (D.23), the a priori

estimation error x̃(n|n − 1) can be expressed as follows:

x̃(n|n − 1) = ∇Φn|x̂(n−1|n−1)x̃(n − 1|n − 1) + Γw(n) (D.24)

Therefore, the covariance matrix P(n|n − 1) satisfies:

P(n|n − 1) = ∇Φn|x̂(n−1|n−1)P(n − 1|n − 1)∇ΦH
n |x̂(n−1|n−1) + ΓQΓH (D.25)
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Then, the second-order Taylor expansion of (D.2) around x̂(n|n − 1) is:

Ψn(x(n)) ≈ Ψn(x̂(n|n − 1))

+ ∇Ψn|x̂(n|n−1){x(n) − x̂(n|n − 1)} +
1

2
Ψn

(D.26)

where ∇Ψn|x̂(n|n−1) is the Jacobian matrix of Ψn evaluated at x̂(n|n − 1) and

Ψn =
K∑

k=1

ΘΨ
k {x(n) − x̂(n|n − 1)}H ∂2Ψn,k

∂x2(n)
|x̂(n|n−1){x(n) − x̂(n|n − 1)} (D.27)

where Ψn,k is the kth element of Ψn(x(n)) and ΘΨ
k is a K × 1 vector with zeros

everywhere except for the kth element which is equal to 1.

Remark 3: Once again, it should be noted that the kth element of Ψn can be

expressed as follows:

Ψn,k = tr{ ∂2Ψn,k

∂x2(n)
|x̂(n|n−1)

× {x(n) − x̂(n|n − 1)}{x(n) − x̂(n|n − 1)}H}
= tr{{x(n) − x̂(n|n − 1)}{x(n) − x̂(n|n − 1)}H

∂2Ψn,k

∂x2(n)
|x̂(n|n−1)}

(D.28)

Then, given (D.2) and (D.26) the innovation can be expressed as follows:

y(n) − Ψn(x̂(n|n − 1)) ≈ ∇Ψn|x̂(n|n−1){x(n) − x̂(n|n − 1)} +
1

2
Ψn + b(n)

(D.29)

Unlike the Kalman filter in the linear case or the EKF, the innovation depends

on Ψn. Therefore, to obtain the a posteriori estimation of the state vector, the

following relation can be considered:

x̂(n|n) = x̂(n|n − 1) + K(n){y(n) − Ψn(x̂(n|n − 1)) − 1

2
Ψn} (D.30)

where K(n) is the Kalman gain defined in (D.14) and the error estimation co-

variance matrix is updated as in (D.17).
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However, in practical case x(n)− x̂(n|n−1) is not available and hence Ψn cannot

be computed. For this reason, instead of Ψn one suggests using:

Ψn =
K∑

k=1

ΘΨ
k Ψ

mean

n,k (D.31)

where Ψ
mean

n,k = tr{P(n|n − 1)
∂2Ψn,k

∂x2(n)
|x̂(n−1|n−1)}.

As consequence, the state vector is updated as follows:

x̂(n|n) = x̂(n|n − 1) + K(n){y(n) − Ψn(x̂(n|n − 1)) − 1

2
Ψn} (D.32)

The IEKF is another alternative that aims at improving the EKF [Gelb 74]. The

purpose is to linearize the measurement model around the updated state x̂(n|n),

instead of the predicted state x̂(n|n − 1). Indeed, the Bayesian approach makes

it possible to separate the Kalman filter in two steps: the prediction step and the

filtering step. The nearer the linearization point is to the real value, the lower

the linearization error should be. In addition, after the filtering step, x̂(n|n) is

expected to have a lower error variance than x̂(n|n − 1). For the above reasons,

using the IEKF can be of interest.

Given the state-space equations in (D.1) and (D.2), the a priori estimation of

the state vector and its covariance matrix can be obtained as in (D.7) and (D.9)

respectively.

To obtain the a posteriori estimation of the state vector, an iterative process

is introduced. At the i + 1th iteration, with i ∈ {0, 1, 2, . . . , Ikf}, where Ikf is

x̂(n − 1|n − 1) = x̂0(n|n)

x̂(n|n − 1)

(D.7) (D.33)

(D.34)

i≥1 T

T : |x̂i(n|n) − x̂i+1(n|n)| < αcvgIu×1

i = i+1i = i+1

OKOK

Not OK Not OK

x̂i+1(n|n)

x̂(n|n)

= x̂i+1(n|n)

P(n|n − 1)

R

Ki(n)

y(n)

Computing ∇Ψn|x̂i(n|n)

∇Ψn|x̂i(n|n)

Figure D.2: IEKF
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the number of iterations, the (i + 1)th a posteriori estimate of the state vector

satisfies:

x̂i+1(n|n) = x̂(n|n − 1) + Ki(n){y(n) − Ψn(x̂(n|n − 1))} (D.33)

where

Ki(n) = {Pxy
i (n)}{Pyy

i (n)}−1 (D.34)

Pyy
i (n) = ∇Ψn|x̂i(n|n)P(n|n − 1)∇ΨH

n |x̂i(n|n) + R (D.35)

Pxy
i (n) = P(n|n − 1)∇ΨH

n |x̂i(n|n) (D.36)

and x̂0(n|n) = x̂(n|n − 1). Figure D.2 shows the block scheme of the IEKF.

The estimation-error covariance matrix has to be updated as follows:

Pi+1(n|n) = P(n|n − 1) − Ki(n)∇ΨH
n |x̂i(n|n)P(n|n − 1) (D.37)

Then, having a new value of the estimate, the procedure is repeated until the

difference between two consecutive estimates is lower than a predefined value

αcvg:

|x̂i(n|n) − x̂i+1(n|n)| < αcvgIU×1 αcvg > 0 (D.38)

where IU×1 is a U × 1 vector composed of ones.

The relations (D.33)-(D.37) define the IEKF. Nevertheless, it is again a local

approximation and the convergence of the estimate is not guaranteed as in the

EKF.
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AppendixE
Sigma-Point Kalman Filter

When dealing with the SPKF, the state distribution is still approximated by a

Gaussian distribution, which is now characterized by a set of points lying along

the main eigenaxes of the random variable covariance matrix, as shown in figure

E.1.
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Figure E.1: Gaussian distribution approximated by the sigma-points

These so-called sigma-points are propagated through the non-linear system (D.2),

as shown in figure E.2. A weighted combination of the resulting values makes

it possible to estimate the mean and the covariance matrix of the transformed

random vector, i.e. the Gaussian random variable that undergoes the non-linear

transformation.

On the one hand, the UKF is based on the unscented transformation [Wan 01].
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Non-linear
transformation

y(n) = Ψn(x(n))

real probability densities

sigma-points

x(n), P(n|n − 1) y(n), Pyy(n)

Figure E.2: Non-linear transformation for a random vector of size 2

When the density is odd, the weights are chosen to provide the exact second-order

Taylor expansion around the mean of the random variable. The UKF was pro-

posed by their authors as an alternative to the EKF to avoid the linearization step.

Nevertheless, Lefebvre et al. [Lefe 02] showed that the sigma-point approach cor-

responds to a weighted statistical linear regression (WSLR). In [VdMe 01], a

square-root UKF is presented. It has better numerical properties and guarantees

the positive semi-definiteness of the underlying state covariance.

On the other hand, the CDKF is based on the second-order Sterling polynomial

interpolation1 formula [Ito 00]. The linearization is based on Sterling polynomial

interpolation around the last available estimate of the state vector. The CDKF

can be seen as a Bayesian approach of a second-order divided difference filter

(DDF). According to Nörgaard et al. [Norg 00], if the last available estimate is

“far” from the real value, the Sterling polynomial interpolation approximation of

the non-linear function is better than a Taylor expansion approximation.

Let us consider the state-space representation done in (D.1) and (D.2). Thus,

as the size of the state vector is U , there are 2U + 1 sigma-points stored in the

following matrix:

X(n−1|n−1) =
[

X0(n − 1|n − 1) Xa(n − 1|n − 1) Xb(n − 1|n − 1)
]

(E.1)

1Sterling polynomial interpolation [Boas 64] is the approximation in an infinite sum of terms

of a function yi = f(xi)|i∈Z = f(x0 + hu) around a value x0, where u = xi−x0

h
and h is the

distance between two points chosen arbitrarily. Thus, the second-order Sterling formula of the

function f(xi) is yi = f(xi) ≈ y0 + u
2 (y1 − y−1) + u2

2 (y1 + y−1 − 2y0).
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where

X0(n − 1|n − 1) = x̂(n − 1|n − 1)

Xa(n − 1|n − 1) = x̂(n − 1|n − 1) + Λ
(

⋆

√

P(n − 1|n − 1)
)

m

m ∈ {1, . . . , U}

Xb(n − 1|n − 1) = x̂(n − 1|n − 1) − Λ
(

⋆

√

P(n − 1|n − 1)
)

m

m ∈ {U, . . . , 2U}
(E.2)

(⋆

√

P(n − 1|n − 1))m is the mth column of the matrix square-root, ⋆

√

(.) is the so-

called matrix square-root that can be obtained by using the lower triangular

Cholesky decomposition and Λ is a scalar scaling factor that determines the

spread of the sigma-points. These points are deterministically chosen so that

they completely capture the true mean and the covariance matrix of the Gaussian

random variable.

The difference between CDKF and UKF stands in the way the mean and the

covariance matrix of the transformed Gaussian random variable are calculated.

The CDKF uses only a single scalar scaling parameter Λ, as opposed to three

required by the UKF. When using the CDKF, Λ =
√

3 [VdMe 04b]. If the UKF

is used, one has:

• Λ = ι2(U + κ) + U , with 10−4 ≤ ι ≤ 1,

• κ is the secondary scaling parameter usually set to 0 or 3 − U [Juli 95].

• η is the third scaling parameter used to incorporate prior knowledge of the

distribution. For example, when dealing with Gaussian distributions η = 2

is the optimal value [Wan 01].

Let us define the weight scalar parameters for the UKF [Wan 01] as follows:

w(c0)
0 =

η

η + U

w(c1)
0 =

η

η + U
+ (1 − ι2 + η)

w(c0)
m = w(c1)

m =
1

2(U + Λ)

(E.3)
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and for the CDKF [VdMe 04b] as:

w(c0)
0 =

Λ2 − U

Λ2

w(c0)
m =

1

2Λ2

w(c1)
m =

1

4Λ2

w(c2)
m =

Λ2 − 1

4Λ4

(E.4)

The sigma-points are propagated through the non-linear Φn as follows:

X(n|n − 1) = Φn (X(n − 1|n − 1)) (E.5)

Then, the a priori mean is obtained as follows:

x̂−(n|n − 1) =
2U∑

m=0

w(c0)
m Xm(n|n − 1) (E.6)

while the a priori estimation error covariance matrix when using the UKF satis-

fies:

P(n|n − 1) =
2U∑

m=0

w(c1)
m

[

Xm(n|n − 1) − x̂−(n|n − 1)
]⋆

+ Q (E.7)

where [(.)]⋆ = [(.)] × [(.)]H .

When using the CDKF, one has:

P(n|n − 1) =
U∑

m=0

{wc1
m [Xm(n|n − 1) − Xm+U(n|n − 1)]⋆

+ wc2
m [Xm(n|n − 1) + Xm+U(n|n − 1) − 2X0(n|n − 1)]⋆} + Q

(E.8)

Then, the a priori sigma points are calculated as follows:

X(n|n − 1) =
[

X0(n|n − 1) Xa(n|n − 1) Xb(n|n − 1)
]

(E.9)

where:

X0(n|n − 1) = x̂(n|n − 1)

Xa(n|n − 1) = x̂(n|n − 1) + Λ
(

⋆

√

P(n|n − 1)
)

m

m ∈ {1, . . . , U}

Xb(n − 1|n − 1) = x̂(n|n − 1) − Λ
(

⋆

√

P(n|n − 1)
)

m

m ∈ {U, . . . , 2U}

(E.10)
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Once the a priori sigma points are calculated, they are propagated through the

non-linear function:

Y(n|n − 1) = Ψn (X(n|n − 1)) (E.11)

The mean and the covariance of y(n) are approximated by using the posterior

sigma points as follows:

ŷ−(n) =
2U∑

m=0

wc0
m Ym(n|n − 1) (E.12)

where Ym(n|n − 1) = Φn (X(n|n − 1)).

Then, the state vector is estimated recursively as follows:

x̂(n|n) = x̂(n|n − 1) + K(n){y(n) − ŷ−(n)} (E.13)

where K(n) is the Kalman gain defined as:

K(n) = {Pxy(n)}{Pyy(n)}−1 (E.14)

On the one hand, when using the UKF, the covariance matrix Pyy(n) of the

innovation ỹ(n) = y(n) − ŷ−(n) and the cross-covariance matrix Pxy(n) between

y(n) and the state prediction error satisfy:

Pyy(n) =
2U∑

m=0

wc1
m

[

Ym(n|n − 1) − ŷ−(n)
]⋆

+ R (E.15)

Pxy(n) =
2U∑

m=0

wc1
m

[

Xm(n|n − 1) − x̂−(n)
]

×
[

Ym(n|n − 1) − ŷ−(n)
]

(E.16)

On the other hand, when using the CDKF, the covariance matrix of the innova-

tion and the cross-covariance matrix between y(n) and the state prediction error

satisfy:

Pyy(n) =
U∑

m=0

{wc1
m [Ym(n|n − 1) − Ym+U(n|n − 1)]⋆

+ wc2
m [Ym(n|n − 1) + Ym+U(n|n − 1) − 2Y0(n|n − 1)]⋆} + R

(E.17)

Pxy(n) = ⋆

√

wc1
m P(n|n − 1) [Y1:U(n|n − 1) − YU+1:2U(n|n − 1)]H (E.18)

Finally, the estimation error covariance matrix is updated as follows:

P(n|n) = P(n|n − 1) − K(n)Pyy(n)KH(n) (E.19)
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AppendixF
Extended and Unscented H∞ Filter

When a non-linear estimation issue is addressed, alternatives to the Kalman fil-

tering approaches are the so-called “extended H∞ filter” and the “unscented H∞

filter”.

Indeed, initial works about the “extended H∞ filter” were conducted by Burl

[Burl 98]. Like the EKF, it consists of a first-order linearization around the last

available estimation of the state vector. Since, various authors have used the

“extended H∞ filter. See for instance, Giremus et al. [Gire 09] who study the

relevance of H∞ filtering in the field of the global positioning system navigation.

However, the authors do not obtain noticeable improvements in terms of posi-

tioning error in comparison with the Kalman filtering.

Let us consider the equations (D.1), (D.2) and (B.1), that define the state-space

of the system. The matrix P∞(n + 1|n) satisfies the following Riccati equation

for the “extended H∞ filter”:

P∞(n + 1|n) = ∇ΦH
n+1|x̂(n|n)P

∞(n|n)∇ΦH
n+1|x̂(n|n) + ΓWΓH (F.1)

= ∇Φn+1|x̂(n|n)P
∞(n|n − 1){IU −

[

∇ΨH
n |x̂(n|n−1) L

H
]

×M
−1

[

∇Ψn|x̂(n|n−1)

L

]

P∞(n|n − 1)}∇ΦH
n+1|x̂(n|n)

+ΓWΓH (F.2)

where ∇ΦH
n+1|x̂(n|n) is the Jacobian matrix of Φn+1 evaluated for x̂(n|n), ∇Ψn|x̂(n|n−1)

is the Jacobian matrix of Ψn evaluated for x̂(n|n − 1) and

M =

[

V 0
0 −Ξ2IU

]

+

[

∇Ψn|x̂(n|n−1)

L

]

P∞(n|n − 1)
[

∇ΨH
n |x̂(n|n−1) L

H
]

=

[

∇Ψn|x̂(n|n−1)P
∞(n|n − 1)∇ΨH

n |x̂(n|n−1) + V ∇Ψn|x̂(n|n−1)P
∞(n|n − 1)LH

LP∞(n|n − 1)∇ΨH
n |x̂(n|n−1) LP∞(n|n − 1)LH − Ξ2IU

]

(F.3)
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where Ξ2 is the prescribed noise attenuation level given in (B.3).

When using the “extended H∞ filter”, the state vector can be estimated recur-

sively as follows:

x̂(n|n) = x̂(n|n − 1) + K∞(n){y(n) − Ψn(x̂(n|n − 1))} (F.4)

where K∞(n) is the filter gain defined as:

K∞(n) = {Pxy∞(n)}{Pyy∞(n)}−1 (F.5)

where Pyy∞(n) is defined as follows:

Pyy∞(n) = ∇Ψn|x̂(n|n−1)P
∞(n|n − 1)∇ΨH

n |x̂(n|n−1) + V (F.6)

and Pxy∞(n) is:

Pxy∞(n) = P∞(n|n − 1)∇ΨH
n |x̂(n|n−1) (F.7)

Remark 1: when Ξ2 tends to +∞, the “extended H∞ filter” reduces to the EKF

[Hass 99].

Remark 2: the computational cost of the “extended H∞ filter” is slightly higher

than the EKF.

The “unscented H∞ filter” was recently proposed by Li et al. in [Li 10]. It is

implemented by embedding the unscented transformation into the “extended H∞

filter” architecture. According to the authors, the unscented H∞ filtering can be

carried out by using the statistical linear error propagation approach [Sibl 06].

Like the UKF, the unscented H∞ filter avoids the linearization step by using an

unscented transformation. In [Wang 10], an unscented H∞ filter is used to pro-

vide an initial alignment of an inertial navigation system. The authors show that

the H∞ filtering approach would be an effective method when the measurement

noise is colored.

According to [Li 10] and given (D.1), (D.2) and (B.1), when using the “unscented

H∞ filter”, the state vector can be estimated as follows:

x̂(n|n) = x̂(n|n − 1) + K∞(n){y(n) − ŷ−(n)} (F.8)
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where ŷ−(n) is obtained as in (E.12) by performing the same process as in the

UKF, but by replacing the matrix Q by W. The gain K∞(n) is obtained as in

(F.5), but Pxy∞(n) and Pyy∞(n) are now approximated as follows:

Pyy∞(n) ≈
2U∑

m=0

wc1
m

[

Ym(n|n − 1) − ŷ−(n)
]⋆

+ V (F.9)

and

Pxy∞(n) ≈
2U∑

m=0

wc1
m

[

Xm(n|n − 1) − x̂−(n)
]

×
[

Ym(n|n − 1) − ŷ−(n)
]

(F.10)

where the wc1
m , Xm(n|n − 1), x̂−(n) and Ym(n|n − 1) are obtained as in (E.3),

(E.5), (E.6) and (E.11) respectively, by the using the UKF process.

Considering L = IU , given (F.6), (F.7), (F.9) and (F.10) the matrix M in (F.3)

can be rewritten as:

M =

[

Pyy∞(n) {Pxy∞(n)}H

Pxy∞(n) P∞(n|n − 1) − Ξ2IU

]

(F.11)

Finally, the matrix P∞(n|n) can be obtained as:

P∞(n|n) = P∞(n|n − 1) −
[

Pxy∞(n) P∞(n|n − 1)
]

×M
−1

[

{Pxy∞(n)}H

P∞(n|n − 1)

]

(F.12)

Remark 1: the unscented transform is used to approximate the matrices that

are involved in the definition of the H∞ gain.

Remark 2: concerning the work proposed by Li et al. in [Li 10], we have decided

to look at it and evaluate its performance even if we are not totally convinced by

the way the authors have motivated their approach and justified it. On the one

hand, in their paper [Li 10], they speak of covariance matrices and define some

quantities using the expectation. This should not be done as they are working in

an H∞ setting, where there is not statistical mean to be considered. On the other

hand, according to appendix C, we have seen that the equations describing the

H∞ filter could be seen as a kind of Kalman filter. Therefore, we can understand

that the authors in [Li 10] consider that the solution of the Ricatti equation in

the H∞ setting can be viewed as a covariance matrix.
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[Ferr 10] G. Ferré and M. Raoult. Flexible Distributed Wideband Cognitive

Radio Network with Double Threshold Energy Detector Combining

Cooperative and Spatial Diversity. Proceedings of the EURASIP Eu-

ropean Signal Processing Conference (EUSIPCO ’10), pp. 880–884,

August 2010. 79

[Foki 09] L. Fokin and A. G. Shchipitsyn. Innovation-Based Adaptive

Kalman Filter Derivation. Proceedings of the IEEE International

Sierian Conference on Control and Communications (SIBCON ’09),

pp. 318–323, March 2009. 80

[Fu 06] X. Y. Fu, H. Minn, and C. Cantrell. Two Novel Iterative Joint

Frequency-Offset and Channel Estimation Methods for OFDMA Up-

link. Proceedings of the IEEE Global Communications Conference

(GLOBECOM ’06), pp. 1–6, November 2006. 2, 52

[Gelb 74] A. Gelb. Applied Optimal Estimation. MIT Press, 1974. 149

[Gero 99] J. C. Geromel. Optimal Linear Filtering Under Parameter Un-

certainty. IEEE Transactions on Signal Processing, Vol. 47,

pp. 168–175, January 1999. 135

[Gire 09] A. Giremus, E. Grivel, and F. Castanié. Is H∞ Filter Relevant for
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DS-CDMA Multi-porteuse. PhD thesis, under the supervision of

E. Grivel and M. Najim, Université Bordeaux 1, Ecole Doctorale
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d’Etudes du Traitement du Signal (GRETSI ’09), September 2009.

In French. 3, 5, 128
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