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1. Introduction

Compressive sensing is a new field in signal processing and applied mathematics. It allows one to simultane-
ously sample and compress signals which are known to have a sparse representation in a known basis or dictionary
along with the subsequent recovery by linear programming (requiring polynomial (P) time) of the original signals with
low or no error [1–3]. Compressive measurements or samples are non-adaptive, possibly random linear projections
of the given signal. Most importantly, sparsity arises in many physical signals, hence this approach is of significant
importance. The results in this area apply to biomedical imaging, astronomy, single-pixel photography, and many
other disciplines.

The present work outlines certain aspects of our ongoing research in this area. Of much interest is the develop-
ment of new approaches to linear and nonlinear inverse scattering problems [4] that are based on compressive sensing
ideas. Past work in compressive sensing has been restrictedto linear inverse problems of the formy = Ax whereA
is a matrix mapping input (object)x to output (data)y. In this linear context, the focus has been to show that despite
significant undersampling of the data signaly as projections of the formy0 = PT y, whereT denotes the complex
conjugate transpose andP is a measurement matrix obeying a mild incoherency property, one can for a broad class
of sparse object signalsx (where most of the entries ofx are zero or negligible) still carry out perfect inversions or
reconstructions with low error to the compressed inverse problem of invertingx from y0 wherey0 = PT y = PT Ax.
The focus of the present research is to study how these results apply to wave inverse scattering, in both the linear
regime of the so-called Born approximation for weakly scattering objects as well as in the more general context of
strongly scattering objects exhibiting non-negligible multiple scattering interactions. The derived developmentsare
motivated mostly by detection and imaging applications (e.g., biomedical sensing, nondestructive testing, radar) re-
quiring computationally non-intensive (P time) signal processing with limited wave data about a given event or target
of interest.

Particular emphasis is given in the following to the framework termed Bayesian compressive sensing [1]. In-
spired by this approach, next we derive new inverse scattering approaches based on maximum a posteriori probability
(MAP) estimators for the unknown object function (the scattering potential representing the material constitutive
properties) which is assumed to arise as a realization of a sparsity-inducing Laplace prior. In the resulting inversion
methods, a 1-norm regularizing constraint substitutes the2-norm constraint that is more typically adopted in inverse
theory. This 1-norm constraint is typical of compressive sensing theory [1–3]. Two different frameworks are proposed:
The first strategy corresponds to compressive sensing counterparts of conventional iterative Born methods. The sec-
ond approach focuses on the more restricted goals of scatterer localization (for point targets) and shape reconstruction
(for extended scatterers). This focus provides non-iterative approaches that are compressive sensing counterparts of
the more familiar maximum likelihood, MUSIC, and other signal-subspace-based methods which have been an active
research area of our group in recent years [5–8].

2. Bayesian Compressive Sensing for Inverse Scattering

The scattering matrixK for transmitters at pointsRt
j , j = 1, 2, · · · , Nt and receivers atRr

i , i = 1, 2, · · · , Nr

is given by

K(i, j) =

∫

dxG0(R
r
i ,x)V (x)G(x,Rt

j) =

∫

dxG(Rr
i ,x)V (x)G0(x,Rt

j) (1)

whereG0 is the Green function describing radiation and propagationin the background medium (without the unknown
scatterers or inhomogeneities) andG is the total Green function (including the unknown medium contribution) which
obeysG(x,x′) = G0(x,x′)+

∫

dx′′G0(x,x′′)V (x′′)G(x′′,x′). Clearly, the mapping fromV toK in (1) is nonlinear.
HenceforthK will be vectorized. ThusK will mean theNrNt × 1 data vectorvec(K).



Assuming that the sought-after scattering potential can berepresented in a dictionary that is known a priori
(e.g., the scatterers can be small, point-like targets in the computational grid, or the scattering potential can correspond
to a biomedical or geophysical medium for which one has a priori knowledge of the dictionary in question), then we
write: V (x) =

∑L

l=1
τ(l)φl(x). For example, for point targetsφl(x) = δ(x − Xl) whereXl represents thelth target

position. It is assumed thatτ is sparse, i.e., most of its entries are zero. But which entries are zero is not known a
priori. Introducing

Φl,τ (i, j) =

∫

dxG0(R
r
i ,x)φl(x)G(x,Rt

j) (2)

then (1) yieldsK(i, j) =
∑

l τ(l)Φl,τ (i, j) which givesvec(K) =
∑

l τ(l)vec(Φl,τ ). Henceforthvec(Φl,τ ) will be
denoted simply asΦl,τ with the understanding that this is the vectorized form of this matrix. It is convenient for
notational compactness to re-write the preceding results as K = Aττ whereAτ is theNrNt × L matrix Al,τ =
[Φ1,τ Φ2,τ ... ΦL,τ ]. Note that if the scattering is weak such that it can be approximated via the Born approximation,
thenG ≃ G0 so that from (2) the quantityΦl,τ is independent ofτ and depends only ofl, i.e., then we can put
Φl,τ = Φl. This renders the special linear modelK = Aτ whereA = [Φ1 Φ2 ... ΦL]. We are also interested in this
particular weak scattering regime, but our focus is the moregeneral regime including multiple scattering where the
signal model is nonlinear.

The compressed data are assumed to take the formg = PT K whereT denotes the complex conjugate transpose
andP is aNrNt × v matrix whosev columns definev projective measurements of theNrNt × 1 data vectorK. Of
particular interest are random projective measurements which can be suitably converted to random orthoprojectors.
Adding complex white Gaussian noisew of varianceσ2 then we have the revised modelg = PT K + PT w =
PT Aττ + PT w. Our goal is to derive MAP estimators forτ that take into account the a priori knowledge on sparsity
(most of the entries ofτ are zero). To this end, consider the Laplace probability density (sparsity prior)

p(τ |λ) = (λ/2)Lexp(−λ
∑

l

|τ(l)|) = (λ/2)Lexp(−λ||τ ||1) (3)

whereλ is a (regularizing) parameter which characterizes the sparsity level. Thus for large values ofλ the density in
(3) favors low 1-norm signals, which in many instances also carries low 0- norm (this is, in fact, the key useful fact in
many of the most impressive developments in compressive sensing [2,3]).

The MAP estimator̂τ for τ is then given for orthogonal projectionsP by

τ̂ = arg minτ

[

v

2NrNtσ2
||g − PT Aττ ||22 + λ||τ ||1

]

. (4)

Note the role of the 1-norm regularization. Expression (4) contrasts with the more conventional solution obtained
under the assumption of a normal or Gaussian prior, which is of the same form but where 1-norm ofτ is substituted
by 2-norm. The result (4) invites for some new iterative methods involving 1-norm regularization. Thus we can adopt
an iterative scheme of the form:

τi+1 = arg minτ

[

v

2NrNtσ2
||g − PT Aτi

τ ||22 + λ||τ ||1

]

(5)

whereAτ is computed at the(i + 1)th iteration using the estimate forτ from the preceding iteration (τi). This value
τi is used to obtain an estimate of the total Green functionG from whichAτi

is computed. An alternative approach is

τi+1 = τi + arg min∆τ

[

v

2NrNtσ2
||g − PT A′

τi
∆τ ||22 + λ||∆τ ||1

]

(6)

whereA′

τ = [Φ′

1,τ Φ′

2,τ ... Φ′

L,τ ] where

Φ′

l,τ =

∫

dxG(Rr
i ,x)φl(x)G(x,Rt

j). (7)

ThusA′

τi
is defined as above, but usingτi as ourith approximation toτ from which we compute for the iteration in

question the total Green functionG which plays the role of our new background Green function. The methods (5,6)



are Bayesian compressive sensing versions of the conventional iterative Born methods, where we incorporate both the
linear projective measurements, with the idea of reducing the number of measurements, as well as the sparsity prior
which gives 1-norm regularization in place of the more familiar 2-norm regularization.

We develop next another scheme that is non-iterative. This approach belongs to the general class of so-called
qualitative methods in inverse scattering [4], and has beenstudied before in [9] in the passive sensing regime of the
inverse source problem. The following developments apply to the active sensing case relevant to the inverse scattering
problem. The method has been designed for scatterers whose response can be modeled by a few dominant scattering
centers. To ease exposition, we consider next the canonicalcase of scatterers formed by collections of point targets. In
this particular case, one can borrow from results derived in[6] to show that the signal model in (1) can be expressed as

K = Γ0vec(B) (8)

whereB is anL × L two-point scattering operator having entries

B(l, l′) = τ(l)δl,l′ + τ(l)τ(l′)G(Xl,Xl′) (9)

and Γ0 is an NrNt × L2 matrix whose columns are theNrNt × 1 vectors formed by vectorizing the matrices
Ψl,l′(i, j) = G0(R

r
i ,Xl)G0(Xl′ ,R

t
j), l = 1, · · · , L; l′ = 1, · · · , L. A MAP-like estimator which ignores the model-

based structure ofB in (9) and assumes Laplace pdf-induced sparsity ofB (a condition that requires a few point targets
relative to the sensing array size) is then defined, for the noise signal model adopted earlier (i.e.,g = PT K + PT w),
by

B̂ = arg minB

[

v

2NrNtσ2
||g − PT Γ0vec(B)||22 + λ||vec(B)||1

]

(10)

which suggests the imaging functionP (Xl) = maxl′ |B̂(l, l′)|. This method has a simple structure under the Born
approximation where it reduces to the more familiar Bayesian compressive sensing approach to inverting linear map-
pings.

The latter method was validated with computational examples based on the geometry shown in Figure 1. Figure
2 shows the imaging via (10) when all the 11 transmitters wereused in generating the data and noise was added to
achieve a signal-to-noise ratio of 18 dB (where the signal-to-noise ratio was defined as in [5]). Figure 3 shows a further
compressed data set where only 1 transmit experiment (only the first transmit antenna from left to right in Figure 1 was
active) was considered (under noiseless conditions) and a corresponding inverse source method of an earlier paper [9]
was used. In running these examples we implemented the algorithms above in the familiar basis pursuit format, but
we are currently working on more robust implementations based on suitable regularizations along the lines of L curve
and other methods as implemented in [5]. We are also investigating learning machine approaches for implementation
of the algorithms developed in this work.
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Fig. 1. Geometry in two dimensional free space.
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Fig. 2. Imaging via (10) when all the 11 trans-
mitters were used in generating the data.
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Fig. 3. Reconstruction ofτ using only 1 trans-
mitter.
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