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1. Introduction

Compressive sensing is a new field in signal processing apliedpmathematics. It allows one to simultane-
ously sample and compress signals which are known to havaraespepresentation in a known basis or dictionary
along with the subsequent recovery by linear programmiaguiring polynomial (P) time) of the original signals with
low or no error [1-3]. Compressive measurements or sampéeaan-adaptive, possibly random linear projections
of the given signal. Most importantly, sparsity arises imgnahysical signals, hence this approach is of significant
importance. The results in this area apply to biomedicalgimg, astronomy, single-pixel photography, and many
other disciplines.

The present work outlines certain aspects of our ongoireggres in this area. Of much interest is the develop-
ment of new approaches to linear and nonlinear inversesstagtproblems [4] that are based on compressive sensing
ideas. Past work in compressive sensing has been restiicte@ar inverse problems of the formm= Az where A
is a matrix mapping input (object) to output (data),. In this linear context, the focus has been to show that tkespi
significant undersampling of the data signgas projections of the formp, = PTy, whereT denotes the complex
conjugate transpose aritlis a measurement matrix obeying a mild incoherency propertg can for a broad class
of sparse object signals (where most of the entries af are zero or negligible) still carry out perfect inversions o
reconstructions with low error to the compressed inverselpm of invertingr from 3, wherey, = PTy = PT Ax.

The focus of the present research is to study how these sesily to wave inverse scattering, in both the linear
regime of the so-called Born approximation for weakly sty objects as well as in the more general context of
strongly scattering objects exhibiting non-negligibleltiple scattering interactions. The derived developmenés
motivated mostly by detection and imaging applicationg.(ébiomedical sensing, nondestructive testing, radar) re
quiring computationally non-intensive (P time) signal ggesing with limited wave data about a given event or target
of interest.

Particular emphasis is given in the following to the framewermed Bayesian compressive sensing [1]. In-
spired by this approach, next we derive new inverse scagiepproaches based on maximum a posteriori probability
(MAP) estimators for the unknown object function (the seaitty potential representing the material constitutive
properties) which is assumed to arise as a realization o&esip-inducing Laplace prior. In the resulting inversion
methods, a 1-norm regularizing constraint substitute2therm constraint that is more typically adopted in inverse
theory. This 1-norm constraint is typical of compressivesseg theory [1-3]. Two different frameworks are proposed:
The first strategy corresponds to compressive sensing eqants of conventional iterative Born methods. The sec-
ond approach focuses on the more restricted goals of sgalbealization (for point targets) and shape reconstoacti
(for extended scatterers). This focus provides non-itexratpproaches that are compressive sensing counterparts o
the more familiar maximum likelihood, MUSIC, and other sifssubspace-based methods which have been an active
research area of our group in recent years [5-8].

2. Bayesian Compressive Sensing for Inverse Scattering

The scattering matriX< for transmitters at pointR§,j =1,2,---,N,and receivers @R},i = 1,2,--- , N,
is given by

K(i,5) = /deo(Rf,x)V(x)G(sz-) = /de(R;,X)V(X)G()(X,RE-) 1)

whereG, is the Green function describing radiation and propagatidhe background medium (without the unknown
scatterers or inhomogeneities) a@ds the total Green function (including the unknown mediumtdbution) which
obeysG(x,x") = Go(x,x)+ [ dx"Go(x,x")V (x")G(x",x’). Clearly, the mapping frory to K in (1) is nonlinear.
Henceforth/ will be vectorized. Thud( will mean theN,.N; x 1 data vectorec(K).



Assuming that the sought-after scattering potential carepeesented in a dictionary that is known a priori
(e.g., the scatterers can be small, point-like targetsarctimputational grid, or the scattering potential can cpoed
to a biomedical or geophysical medium for which one has aigkimwledge of the dictionary in question), then we
write: V(x) = Zle T(l)¢i(x). For example, for point targets; (x) = d(x — X;) whereX; represents th&h target
position. It is assumed thatis sparse, i.e., most of its entries are zero. But which exn@re zero is not known a
priori. Introducing

By, (i) = / dxGo(R!, x)¢y(x)G(x, RY) @

then (1) yieldsK (4, 5) = >, 7(1)®;,, (¢, j) which givesvec(K) = >, 7(l)vec(®;,-). Henceforthvec(®; ) will be
denoted simply a®; , with the understanding that this is the vectorized form @ thatrix. It is convenient for
notational compactness to re-write the preceding ressli& a= A.7 where A, is the N, N; x L matrix 4; , =
[@1 - @2~ ... D1 -]. Note that if the scattering is weak such that it can be apprated via the Born approximation,
thenG ~ Gy so that from (2) the quantitg, - is independent of and depends only df i.e., then we can put
®; » = ®;. This renders the special linear modél= A7 whereA = [®; ®, ... &;]. We are also interested in this
particular weak scattering regime, but our focus is the ngemeeral regime including multiple scattering where the
signal model is nonlinear.

The compressed data are assumed to take thedernP” K whereT denotes the complex conjugate transpose
andP is aN, N; x v matrix whosev columns define projective measurements of thé. NV, x 1 data vectork. Of
particular interest are random projective measuremenishndan be suitably converted to random orthoprojectors.
Adding complex white Gaussian noise of variances? then we have the revised modgl= PTK + PTw =
PTA,.m+ PTw. Our goal is to derive MAP estimators forthat take into account the a priori knowledge on sparsity
(most of the entries of are zero). To this end, consider the Laplace probabilitysiteigsparsity prior)

p(T|A) = (A/2)"exp( AZIT = (A/2) exp(=Al|7]]1) ©)

where is a (regularizing) parameter which characterizes thes@iydevel. Thus for large values ofthe density in
(3) favors low 1-norm signals, which in many instances alwies low 0- norm (this is, in fact, the key useful fact in
many of the most impressive developments in compressiv@rsgf?, 3]).

The MAP estimator® for 7 is then given for orthogonal projectioisby

¢ — arg min, g~ PP A3+ A||T||1] . @)

{zN Nyo?
Note the role of the 1-norm regularization. Expression @)tasts with the more conventional solution obtained
under the assumption of a normal or Gaussian prior, whicli iiseosame form but where 1-norm efis substituted

by 2-norm. The result (4) invites for some new iterative methinvolving 1-norm regularization. Thus we can adopt
an iterative scheme of the form:

||9 PTATiT

Tip1 = arg min_ 5+ )\|T||1} ®)

{21\[ Nio
where A, is computed at thé + 1)th iteration using the estimate forfrom the preceding iteratiorr{). This value
7; is used to obtain an estimate of the total Green funatidrom which A, is computed. An alternative approach is

v
WW—PTA/TI-ATH%‘*‘MAHJ (6)

Tit1 = T; +arg minx . [
whereA! = [®] &, ... @} ] where

(= [ XG0 (G xRS, (7)

Thus A’ is defined as above, but usingas ourith approximation ta- from which we compute for the iteration in
questlon the total Green functi@i which plays the role of our new background Green functione frifethods (5,6)



are Bayesian compressive sensing versions of the conmehiterative Born methods, where we incorporate both the
linear projective measurements, with the idea of redudiregnumber of measurements, as well as the sparsity prior
which gives 1-norm regularization in place of the more fé&mni2-norm regularization.

We develop next another scheme that is non-iterative. Tgpsoach belongs to the general class of so-called
gualitative methods in inverse scattering [4], and has Istedied before in [9] in the passive sensing regime of the
inverse source problem. The following developments appth¢ active sensing case relevant to the inverse scattering
problem. The method has been designed for scatterers wagisense can be modeled by a few dominant scattering
centers. To ease exposition, we consider next the canarasalof scatterers formed by collections of point targets. |
this particular case, one can borrow from results derivg@]ito show that the signal model in (1) can be expressed as

K =Tyvec(B) (8)
whereB is anL x L two-point scattering operator having entries
B(l, l/) = 7(1)5171/ + T(Z)T(l/)G(Xl, Xl/) (9)

andTy is an N, N, x L? matrix whose columns are th¥, N, x 1 vectors formed by vectorizing the matrices
U (i, j) = GO(R;,XZ)GO(Xl/,Rz),l =1,---,L;l'!=1,--- , L. AMAP-like estimator which ignores the model-
based structure @8 in (9) and assumes Laplace pdf-induced sparsit§ ¢ condition that requires a few point targets
relative to the sensing array size) is then defined, for thgergignal model adopted earlier (i.e.= PT K + PTw),

by

B = arg ming g — P Tgvec(B)||2 + A||vec(B)||1 (20)
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which suggests the imaging functid®(X;) = max;|B(l,1')|. This method has a simple structure under the Born
approximation where it reduces to the more familiar Bayesiampressive sensing approach to inverting linear map-

pings.

The latter method was validated with computational exaspésed on the geometry shown in Figure 1. Figure
2 shows the imaging via (10) when all the 11 transmitters wsesl in generating the data and noise was added to
achieve a signal-to-noise ratio of 18 dB (where the sigoaidise ratio was defined as in [5]). Figure 3 shows a further
compressed data set where only 1 transmit experiment (belfjrst transmit antenna from left to right in Figure 1 was
active) was considered (under noiseless conditions) andrasponding inverse source method of an earlier paper [9]
was used. In running these examples we implemented theithlgsrabove in the familiar basis pursuit format, but
we are currently working on more robust implementationgdam suitable regularizations along the lines of L curve
and other methods as implemented in [5]. We are also insigylearning machine approaches for implementation
of the algorithms developed in this work.
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Fig. 1. Geometry in two dimensional free space.
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