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Abstract: Frequency domain methodology is applied to obtain a nominal model for the Zero-Moment Point
(ZMP) stability index of a biped robot in an attempt to establish a relationship between the robot trunk
trajectories and the stability margin of the contact surface of the foot (or feet) touching the supporting soil. To
this end the biped robot trunk is excited with a variable frequency sinusoidal signal around several operating
points. These input oscillations generate other output oscillations that can be analyzed with the help of
the ZMP measurement system. The proposed ZMP modeling approach not only considers classical rigid
body model uncertainties but also non-modelled robot mechanical structure vibration modes. The non-linear
ZMP model is obtained following three consecutive stages: Equivalent inverted pendulum dynamics, where
saturation and acceleration upper bounds are taken into account, non-modelled inverted pendulum dynamics,
including non-linear effects, and low-pass dynamics defining the system cut-off frequency. The effectiveness
of this method is demonstrated in practice with the SILO2 biped robot prototype, and a simple control strategy
is implemented in order to validate experimentally the usefulness of the models developed.
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1. INTRODUCTION

Interest in legged robots is growing, both because of the inherent scientific challenge and as
a result of their potential applications (Armada and Gonzdlez de Santos, 1997; Armada et
al., 2003). Nevertheless, significant research effort is still required to simplify their inherent
complexity (in both design and control) in order to advance towards the target of making
them of real, practical usability (Gonzdlez de Santos et al., 2000; Virk et al., 2004; Gonzdlez
de Santos et al., 2005).

Among legged robots, the possibility of using two-legged humanoid robots in practical
applications is becoming more feasible, and important work dealing with design and control
aspects of humanoid machines has now been realised (Hirai, 1999). One fundamental aspect
of humanoid robot research that draws considerable attention from the scientific community
is the stability problem of biped locomotion, and relevant contributions on this subject have
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been put forward by many authors (Vukobratovic and Juricic, 1968; Furushu and Masubushi,
1986; Hemami et al., 1973; Mita et al., 1984; Yamaguchi et al., 1993; Goswami, 1999).

The alternation of single and double support phases during the locomotion cycle of a
biped robot results in a complex robot-ground interaction (Fujimoto et al., 1998). This situa-
tion poses well known difficulties in the design of the control system for these machines and
justifies the devotion of special attention to making the desired locomotion cycle possible. As
a consequence, this has been an important research area for many scientists in recent years.
Due to the fact that biped machines are so complex, most of these control designs involve
the use of simplified dynamical modeling (Hemami, 1976). Nevertheless, biped robots are
not only modelled assuming rigid links and ideal torque sources, but also presuppose sagittal
and lateral plane dynamic decoupling (Medrano-Cerda and Eldukhri, 1997).

Although it is understandable that these simplifications are important for easing control
architecture design and real-time motion planning, the use of an oversimplified model in
presence of non-modelled structural elastic modes and non-modelled joint mechanical back-
lash could compromise the desired foot-ground stability. One of the most effective ways to
analyze the foot-ground stability of biped robots is the so called zero moment point (ZMP),
introduced in the pioneering work of Vukobratovic and his co-workers (Vukobratovic et al.,
1968) as an index of stability for the walking cycle. The ZMP concept has been used suc-
cessfully by many authors for biped robot trajectory selection (Yamaguchi et al., 1993; Hirai
et al., 1998; Gienger et al., 1999, Pfeiffer et al., 2000).

In this article, a frequency domain response methodology is proposed for ZMP mod-
eling. The proposed modeling methodology divides the ZMP dynamical model into three
parts. The first corresponds to equivalent inverted pendulum dynamics, the second concerns
low pass dynamics, and the third involves model uncertainty due to unmodelled dynamics.
The effectiveness of the proposed approach is evaluated and tested using a biped robot with
fourteen degrees of freedom.

2. ZERO MOMENT POINT CONCEPT

The biped locomotion process is generally divided into single and double support stages. In
single support, the biped robot’s weight rests on only one leg, while in double support it rests
with the help of both legs. Additionally, these stages are usually analyzed in two kinematic
planes: Sagittal and lateral (Vukobratovic et al., 1990; Winter, 1990). The sagittal plane
splits the robot’s body into the left and right halves, while the lateral plane splits the robot
into the front and rear halves. It is known that for stable gaits the robot’s kinematics in the
sagittal plane are more important than those in the lateral plane, since the sagittal plane is
parallel to locomotion process. However, it has been demonstrated that the lateral plane does
also play a fundamental role in robot stabilization (Yamaguchi et al., 1993).

The most important task during biped locomotion is to preserve posture and gait stability.
One of the most effective tools for biped posture stabilization analysis is provided by the zero
moment point (ZMP) concept (Vukobratovic and Stokic, 1975). This method is based on the
fact that single support quasi-static biped robot stability is achieved by “ensuring the foot’s
whole area, and not only the edge, is in contact with the ground” (Vukobratovic and Borovac,
2004) (Figure 1).
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Figure 1. The ZMP concept.
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Figure 2. ZMP stability criteria from foot support area.

The ZMP is defined as the point where the ground reaction force is exactly counteracting
the total moment generated by inertial and gravitational effects. Some researchers (Takanishi
et al., 1989; Yamaguchi et al., 1993; Hirai et al., 1998; Fujimoto et al., 1998; Hirai, 1999)
have suggested the following ZMP stability criteria: “The Zero Moment Point of a biped
robot must be constrained within the convex hull of foot support area to ensure stability of
the foot ground contact. This convex hull is the smallest convex set containing foot or feet
ground contact points” (see Figure 2).
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Figure 3. Inverted pendulum model.

3. BIPED ROBOT GAIT STABILIZATION

As was mentioned before, the ZMP is a very useful tool in synthesizing appropriate gaits
for walking locomotion of bipedal robots (Takanishi et al., 1989; Yamaguchi et al., 1993;
Hirai et al., 1998; Fujimoto et al., 1998). Most of these previous works can be separated into
two categories: Offline motion generation and real-time motion generation (Sugihara et al.,
2002). In the first category, biped robot joint controllers must follow pre-calculated ZMP
stable trajectories, while in the second, trajectories are calculated online in accordance with
ZMP stability and the pre-provided objectives of the robot’s motion.

However, due to the fact that both motion generation approaches consider motors as
ideal torque generators and the robot’s mechanical structures as ideal rigid body linkages (in
order to avoid high computational load), dynamics like joint backlashes, actuator saturation,
and some structural vibration modes, any of which could compromise robot gait stability,
are left unmodelled. This lack of gait robustness could be improved if the ZMP location is
directly fed back into the biped robot’s motion generator with the help of the ZMP sensor
array (Caballero et al, 2004).

Furthermore, the full ZMP mathematical model is too complex to be employed in real
time trajectory planning, and such complexity cause difficulties to use it in direct feedback
ZMP based control systems. This drawback is due to the fact that there exists a nonlinear
coupling between the robot dynamics, ground reaction force and ZMP (Takanishi et al., 1989;
Yamaguchi et al., 1993). One way to overcome the problem of ZMP model complexity is
to use reduced order models (Hemami, 1976). These model simplifications are based on
the fact that most human movements support the principle of conservation of total angular
momentum about the body’s center-of-mass (Popovic et al., 2004a,b).

Previous works (Hemami et al., 1973) have suggested that a footed inverted pendulum
(Figure 3) can be used to approximate a full biped system. This reduced order model ap-
proximates full biped dynamics using the following system equations:
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Dynamical equations:

mx, = f ey
my. = f, @)
m@E.+g = [ G)
ZMP constraints:
(ZMP; —x.) f. + @z —ZMP,) f. = 0 “)
(ZMPy —x,) f. + (ze = ZMP,) f, = O. 5)

Where m is the total mass of the robot, x,, y. and z. are the coordinates of the robot’s center of
mass, fy, fy and f, comprise the reaction ground force, ZMP,, ZMP, and ZMP_ are the ZMP
ground position and g is the acceleration due to gravity. Now, after manipulating equations
(1) to (5), the relationship between the ZMP and the robot’s center of mass can be expressed
as follows:

Xcm (Zc + g) - (Zc - ZMPZ) mx‘c

ZMP, = Gt =x.—a (t) X, (6)
zup, = Gt =G ZMPImE _ ), ™)
’ m (Z. + g)
_ (z.—ZMP)
“O = "1 ®

This last expression can provide further insight into the physical meaning of o (¢). If in
equation (8) APV 0, indicating that the vertical acceleration of the robot is much smaller

than the acceleration due to gravity (which is the case for quasi-static locomotion), then a (¢)
(ze —ZMP) 1
—_— ==, where w, can be

c

can be considered constant and approximated by a =~

interpreted as the natural frequency of the equivalent pendulum.

However, the aim of this research is not only to fit the biped robot to an inverted pendu-
lum model, but also to obtain an uncertainty model, in order to consider inverted pendulum
approximation errors and nonlinear effects. This kind of modeling will help to accomplish
real time modeling in direct feedback ZMP based control systems without losing gait robust-
ness.

4. FREQUENCY RESPONSE MODELING

The relationship between the ZMP and biped robot motion in equations (6) to (8) is not only
nonlinear, but also dynamically coupled. This complexity can be handled by obtaining a
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linearization model around a center of mass operation point (X, y., Z.), allowing equations
(6), (7) and (8) to be written as:

ZMP, = ZMP, + ZMPx, 9)

7MP, = X (10)
. 1.

ZMPy: = Xpc— 0Xac = Xac — —5Xac (11)

a)c

ZMP, = ZMP,+ ZMPa, (12)

ZMP, = 7. (13)
. 1.

ZMPxy, = YAac— AYAc = YAc — pRLS (14)

c

Z.—ZMP,) _ iz (15)

g a)C
Since o > 0 the small signal model (equations (11) and (14)) clearly introduces one RHPZ
(right half plane zero) in the root locus plane. Such a system is known in control system
literature as a non-minimum phase and usually defines an important limitation in a closed
loop regime (Skogestad and Postlethwaite, 1996).

One of the simplest methods utilized in system modeling is the frequency response tech-
nique. In order to obtain a nominal biped robot frequency response model for the ZMP
(taking account of its characteristic uncertainty), the biped robot’s center of mass is excited
with a variable frequency sinusoidal signal at several operating points:

XAe = Xosin(owr) (16)
YAac = Yosin(wt). (17

These input oscillations (of varying frequency) generate other output oscillations that can
be analyzed with the help of the ZMP measurement system (Figure 4). Another important
advantage of this method is the fact that after equations (16) and (17) are applied in (11) and
(14), ZM Pp, and ZM P, are in phase with the inputs xa. and ya., respectively. It is then
possible to write:

ZMPAX = XozMmP Sin(a)t) (18)

ZMPAy = YozmpP sin (C()t) (19)

Reducing the problem to an o simple estimation problem for each operation point:



METHODOLOGY FOR ZERO-MOMENT POINT EXPERIMENTAL MODELING 1391

ZMP Output

Figure 4. Frequency response method.
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However, perfect tracking of the center of mass reference (x. (t) = x. (), y. (t) = yer (t))
is not always feasible. These tracking errors are related to uncertainties in robot mass dis-
tribution, actuator saturation, joint backlashes, structure flexibilities and other unmodelled
dynamics. Nevertheless, this complex relationship between the actual and reference center
of mass could be modelled using a “harmonic balance” method (Caballero et al., 2002). This
technique is designed to obtain an average transfer function (analyzing the first harmonic
term) and associated uncertainty function. Hence, for low frequency signals, the average
ZMP model becomes:

ZMPAx = AxXAcr — bxx'Acr (22)

ZMPAy = AyYAcer — byj}Acw (23)

Where ay, b,, a, and b, account for the unmodelled dynamic effects.

The nonlinear ZMP model can now be analyzed in three sections (Figure 5). The first
section matches biped robot dynamics to equivalent inverted pendulum dynamics. In this
section, not only saturation effects in robot acceleration, but also the averaged harmonic
effects of the unmodelled dynamics are considered. The second stage models the uncertainty
of the inverted pendulum model, including nonlinear effects. The last stage acts like a low
pass filter, defining the effective system cut-off frequency due to the effects of tracking the
center of mass reference signals (X, and y.,).
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Figure 5. ZMP frequency domain model.

5. ZERO MOMENT POINT MODELING ALGORITHM

The harmonic balance based algorithm proposed is designed to obtain the parameters a;; and
b;;, uncertainty transfer function G;;, and system cut-off frequency H;;. The first step of this
algorithm consists of building up a ZMP database for small oscillation inputs in n, operating
points. In this step, transient regimes are eliminated and only the steady state is recorded for
n, sampling points, n; amplitude and n, frequency harmonic input signals (Figure 6).

The second step is designed to fit the biped robot to inverted pendulum dynamics. At
this stage, a windowing algorithm is applied to the gathered data and then a fast Fourier
transform (FFT) algorithm is applied in order to obtain an initial estimate of the amplitude
and phase of the ZMP transfer function. Next, a statistical nonlinear regression algorithm
(using the amplitude and phase provided by the FFT as an initial estimate) is applied in order
to improve the input-output frequency model. Finally, a new nonlinear regression is applied
in order to fit ZMP biped model with:

Ginvp_ij (S)|5=jw = a;; — bijs* = a;j + b;j0* (24)

for x.,, and y,, inputs and ZMP, and ZMP, outputs (Figure 7).
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Figure 6. Algorithm for building a database relating ZMP values to the amplitude and frequency of the
harmonic input signals.

The third step is focused on estimating the effective system bandwidth due to the effects
of tracking. It has been demonstrated that this cut-off frequency can be approximated from
servo controller bandwidth (Caballero et al., 2004).

The last step consists of building up an uncertainty transfer function database (see Fig-
ure 8). Here, the influence of nonlinear effects can be considered using harmonic balance,
not only because it has the low-pass filter properties of the third section, but also because of
the time invariant properties of the system. This uncertainty database will be very useful for
designing robust direct ZMP feedback controllers, which assist in attenuating the uncertainty
transfer function effects.
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Figure 7. Algorithm used for fitting the biped robot to inverted pendulum dynamics.

6. EXPERIMENTAL RESULTS

The experimental set-up consists of a biped robot with 14 degrees of freedom (SILO2) (Fig-
ure 9), with four force sensors in each foot in order to measure its ZMP. Experiments are
intended not only to determine the robot’s equivalent inverted pendulum model, but also to
assist with the development of a preliminary ZMP direct feedback for robot stabilization in
double support. Displacement of the biped robot’s center of mass is achieved with the help
of trunk mass motion. This trunk which mass represents about 17% of the overall SILO2
48 kg and it provides the last two degrees of freedom to the robot.

6.1. Building up a ZMP Database

The first part of the experiment focuses on tracking the trajectories of the center of mass
oscillations in the lateral (x axis) and sagittal (y axis) planes. This effect can be approximated
if trunk motion is tracked with sinusoidal profiles:
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Figure 8. Algorithm used for determining the uncertainty dynamics.
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far () A (Z—) L0, (1)
Osn (1) = Ousin (o) 25)
Yo (1) & (Z—) L0 (1)
Oasr (1) = 6Opsin(wt) (26)

where x A () andya.,(t) correspond to small displacements of the robot’s center of mass
reference around the operation point, 6, () and 0, (¢) correspond to small angular dis-
placements of reference trunk angles, m;, is the trunk mass, m, is the total biped robot mass
and [, is the trunk length (see Figures 9 and 10; ZMP and time are in meters and seconds,
respectively).

6.2. Fitting the biped robot to inverted pendulum dynamics.

Once the ZMP database has been recorded, an FFT and harmonic nonlinear regression are
applied in order to obtain the best-match a and b parameters. The experimental results cor-
roborate the inverted pendulum approximation in the lateral and sagittal planes (see the Bode
diagrams in Figures 11 and 12). Also, they demonstrate that there is some dynamical cou-
pling between the lateral and sagittal plane dynamics (see Bode diagrams in Figures 13 and
14); the following a;; and b;; parameters were obtained:

ay = 08293, app = 007455, ax = 01895, ay = 1.245
by = 0.2767; b, =0.005428; by =0.09979; by, =0.1012.

6.3. Effective System Bandwidth Estimation

Some preliminary experiments have demonstrated the low pass characteristics of ZMP sys-
tems at high frequencies (Caballero et al, 2004). These low pass characteristics are highly
dependent on the system’s maximum acceleration. This saturation effect limits zero moment
point and center of gravity differences at higher frequencies. Also, there is a limit in tracking
high frequency reference signals, due to the fact that servo controllers act as low pass filters.
Some previous experiments have demonstrated that SILO2 servo controllers have a cut-off
frequency of between 15 and 30 radians per second. This effect is approximated by a second
order transfer function (errors in this model are considered as part of the system uncertainty):

e w2 _ 900
11 = Hp = Mz = 22_S2+2§wns+a)ﬁ_s2—|—60s+900'
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Sagittal

Figure 9. SILO2 biped robot.
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Figure 10. ZMPx(t) output for different xc(t) harmonic inputs.

6.4. System Uncertainty Estimation

In order to consider modeling errors occurring in previous steps, the proposed nominal model
for each frequency is compared with the recorded database and the error between the nominal
and real models is recorded for each frequency. As a result, the standard deviation in function
of frequency acts like a high pass filter (see the Bode diagrams in Figure 15). After this, it is
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Figure 12. Bode diagrams for ZMP, (w)/Y.(w) output against w.
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Figure 13. Bode diagrams for dynamical coupling ZMP, (w)/X.(w).
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Figure 14. Bode diagrams for dynamical coupling ZMP, (w)/Y .(w).
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Figure 15. Bode diagrams for additive uncertainties.

possible to model multiplicative uncertainties as proposed in the model in Figure 5 instead
of using additive uncertainties. As a result of this conversion, the following multiplicative
uncertainty transfer functions (see Bode diagrams in Figure 16) are obtained:
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Figure 16. Bode diagrams for multiplicative uncertainties.

6.5. ZMP Small Signal Model

The ZMP dynamical model described in Figure 5 could be represented in Small Signal form
(without acceleration saturation effect) by the equivalent multivariable system:

ZMP, Xor
i | o[ ]

ZMP, .
Where
0.8293—0.2767s> s+1 0.07455—0.005428s> s+5
(w) (1445540 () (W) (1445500 6))
Gzup = 900 0.1895—0.09979s> +1 1.245-0.101252 +0.1
5246054900 (1 + 7568 (S)) ( “2+605-+900 ) (1 + T038n (S))
AL G = A6 = 1Aa G = 1Axn@) =1

and although G, p(s) is stable and diagonal dominant, the presence of right half plane zeros
in this system defines it as a non-minimum-phase dynamic system.
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Figure 17. ZMP direct feedback controller.

6.6. Testing a ZMP Direct Feedback Controller

In order to test the effectiveness of the ZMP model, the SILO2 trunk reference trajectory
was now directly controlled using ZMP direct feedback. As is shown in Figure 17, it is a
two timescale cascade controller. The inner loop is a fast position servo controller loop, and
the outer loop is a slower ZMP controller. The reference position of the servo controller is
directly driven by the ZMP controller, but the ZMP controller reference is a pre-provided
objective in robot motion.

The proposed ZMP nominal model defines a non-minimum-phase system, and it is well
known that this type of dynamics imposes some restrictions on controller performance. In
order to accomplish these restrictions the following controller is proposed:

K
Cezmpt () = 7‘ (28)
K,

Cchp2 (S) s + KZ.

(29)

The proposed controller was tested with K; = 0.014; K, = 0.2. The experiment consisted of
changing the ZMP reference from ZMPy = 0.12m to a new reference at ZMPy = 0.17m at t
= 0. As it can be seen from Figures 18 to 20, it took about 20 seconds to reach the set point.
Next, at time t = 80 seconds, a 4 kg mass was placed on one side (right) of the robot. The
ZMP controller then compensated for the ZMP reference error, changing the biped robot’s
center of mass with the help of trunk motion. Figure 21 shows a photographic sequence of
the experiment.

This last experiment reveals the importance of ZMP modeling in the frequency domain.
The robustness of the frequency domain model guarantees the robustness of the proposed
controller with respect to several operating variables.
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Figure 18. ZMP regulation with direct feedback. Units of ZMP and time are meters and seconds
respectively.
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Figure 19. ZMP error regulation with direct feedback. Units of ZMP and time are meters and seconds
respectively.
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Figure 20. Trunk motion to accomplish ZMP regulation with direct feedback. Units of theta and time are
radians and seconds respectively.

Figure 21. Experimental results for the ZMP direct feedback controller.
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7. CONCLUSION

The proposed frequency domain modeling methodology has been successfully applied in
double support to a biped robot with 14 degrees of freedom. Although the Gz p(s) trans-
fer function is stable and diagonal dominant, some coupling exists between the lateral and
sagittal planes. Also, the inverted pendulum dynamic places two RHPZs (one each for the
lateral and the sagittal planes) defining a non-minimum-phase dynamic for the ZMP. The
actual position of these RHPZs is different for the lateral and sagittal planes. This difference
can be explained by backlashes and mechanical structure differences in the planes. Also,
the experiments have confirmed the time invariant and low pass filter properties of the ZMP
model obtained. Finally, the proposed ZMP frequency domain methodology has been very
useful not only in analyzing ZMP dynamics but also in designing a ZMP direct feedback
controller.

This experiment was performed in double support; the same algorithm could be applied
in order to obtain a set of single support models about different operation points. Finally,
this type of frequency domain model will be very useful in synthesizing one or more robust
controllers for ZMP direct feedback.
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