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Abstract: We propose a novel synthesis method for designing flexible, 
tunable non-periodic filters. It is based on a building block which is 
presented by first time for these purposes, being the poles position tuned by 
means of a coupling coefficient and an amplifier gain. We present the 
device, the design equations and a design of a filter with flat response, 54 
dB of crosstalk and less than 1.3 dB of ripple to explain and validate the 
method. These filters can be used as part of optical cross-connects for 
selecting channels avoiding very restrictive free spectral ranges. Also we 
check the correct operation of the device, against fabrication tolerances of 
coupling coefficients. Frequency dependence of the transfer function poles 
as a unique feature improving the crosstalk of the device spectral response is 
also analyzed. 
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1. Introduction 

The synthesis of optical delay lines filters, from building block like Mach Zehnder 
interferometers (MZI) [1], single ring resonators (RR) [2,3], and compound ring resonators 
(CRR) [4–6] have been widely used to generate filters with arbitrary transfer functions. These 
building blocks have been combined in transversal [7], lattice [1], and cascade [6] structures, 
resulting in filters with infinite and finite impulse response. 

Synthesis methods that use these building blocks, RR [8] and CCR [9], with counter-
propagating modes, are also reported. 

But with all of these methods, optical filters with periodic transfer functions are designed 
and its frequency period is named Free Spectral Range (FSR). This can be a restriction in 
applications where the bandwidth of all the channels to be transmitted is greater than the FSR. 
Wavelength division multiplexing (WDM) communication systems, with a potential 
bandwidth to cover from 1260 nm to 1675 nm, will need time delays in the order of 20 fs, for 
overcoming this restriction. These time delays require total lengths in the order of 2 µm, 
which are not practical in the case of curved waveguides as happens in RR or CRR. First, 
because of high loss [10] at radius of curvature of less than 0.3 µm, and second there are 
problems associated with the stabilization [11], a length variation of one over one thousand 
represents, a FSR change in the order of tens of gigahertz which is inacceptable. Most 
promising devices fabricated in silicon on insulator (SOI) technology have a 1.5 μm radius 
[11], and in other novel configurations including photonics bandgaps, FSR of 140 nm are 
achieved from 45 μm ring length [12]. 

An alternative to overcome this limitation is combining these delay line filters with 
devices including non periodic transfer functions in the building block. 

In this paper, it is proposed a synthesis method for designing infinite impulse response 
filters with arbitrary transfer functions, and ideal infinite FSR. A microring resonator with a 
Michelson interferometer (MI), inside the ring, made of diffraction gratings (DG) is used. 
This device integrates a delay line filter, with a non-periodic transfer function, allowing the 
fabrication of devices with greater time delays and better stability. The integration of these 
two types of filters in a single building block, improves the spectral characteristics in 
comparison with cascading a periodic and non-periodic transfer functions devices. This novel 
transfer function has frequency dependent complex conjugated poles, generating better 
crosstalk. 

This is the first time that this device is used for these applications, different to the one 
previously reported as a reflective laser mirror [13], constituting a basic building block in a 
novel synthesis method for designing optical filters. Apart from breaking the spectral 
periodicity, this topology presents a second order transfer function, only with one RR, and 
poles position is tunable by changing coupling coefficient and gain. The proposed synthesis 
method, based on simple closed equations, allows developing filters with any type of spectral 
response. 

2. Device 

The device to be used as a building block to synthesize non-periodic optical filters is 
presented in Fig. 1, and the list of symbols used is described on Table 1. This is a Michelson 
Interferometer (MI) and an optical amplifier [14], within a ring resonator (MIARR). 
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Table 1. List of Symbols at Fig. 1 

Symbol Significance 

G - bidirectional amplifier power gain 
KM, Ki, Ko - power coupling coefficient of MI, 

input and output couplers respectively 
γM, γi, γo, - excess loss coefficient of MI, input and 

output couplers respectively 
Lx, LM - length position of output coupler and 

MI respectively 

Lb - Michelson interferometer arms length 

The MI acts as a frequency selective reflector, allowing clockwise and counterclockwise 
propagation in the ring. This is made of a directional coupler for splitting the light and 
identical DG as frequency selective mirrors. These gratings are key components of the 
MIARR because they break the transfer function periodicity, for achieving ultra-large FSR. 
The arms of MI have the same length Lb, and the power coupling coefficient KM is different to 
0.5, to assure the MI reflects some light. There is an optical isolator in the input port to avoid 
reflections [15]. This can be replaced by an amplifying optical isolator, providing design 
flexibility and loss compensation [16]. 

 

Fig. 1. Schematic of a MIARR. 

Identical DG, to avoid dealing with two different reflection transfer functions is 
considered. Under this assumption the reflection and transmission transfer functions of the MI 
are given by: 

     1 1 2M MFR K r      (1) 

       
1/2

2 1 1M M MFT j K K r      (2) 

where r(Ω), is the gratings reflectivity. 
The output transfer function of the MIARR can be found using the transfer matrix 

formalism in the z domain, as explained in [17]. But first, the unitary delay τ has to be 
determined. This unitary delay is the total transit time in the RR. Which is given by τ = τr + 
τG, where τr is the time delay due to waveguides length, including RR, couplers, amplifier and 
MI arms, and τG is the gratings group delay. This group delay is the negative derivative of the 
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diffraction gratings reflectivity phase G(Ω) with respect to Ω. This phase, under certain 
conditions, see [18], can be approximated by: 

  
 2 22

bef G

G

b b b

n

ck




 

 
  

      
    

  (3) 

where kb is the corrugation coupling coefficient, αb the distributed loss coefficient, and nbef the 
effective refractive index of gratings, c the vacuum light velocity, and ΩG the center frequency 
(rad/seg) of diffraction gratings spectral response. 

The grating group delay is given by: 

 

 2 2

1bef

G

b b b

n

ck


 

 
  

        

  (4) 

This grating group delay, can be considered constant and can be included in the unitary delay 
τ. The gratings transfer function in the z domain, can be considered as that of a device that 
introduces a fraction of the unitary time delay of τG/τ. Diffraction gratings transfer function is 
given by: 

    ( )
G

Gj
DG z j r e j r z



 


 
      (5) 

where we have taken z = ejΔΩτ, ΔΩ = 2π(f – fG), being fG the center frequency of gratings 
transfer function. 

Choosing the center frequency of diffraction grating ΩG, equal to the resonance frequency 
of one of the longitudinal modes of the ring (with unitary delay τ), it makes that z in the rest of 
the transfer functions of the ring (z = ejΩτ) is equal to z in the diffraction grating transfer 
function [see Eq. (5)]. 

It can be calculated from [17] that the transfer functions of the MIARR at ports A3, A4a, 
and A4b are given by: 

 
     

   

1/2 1 1

1 23

1 * 1
1

1 1 1

1 1

i c c

p p

Z z Z zA

A Z z Z z

  

 

  


 
  (6) 

where Zc1(z) and Zc2(z) are given by: 

 

 
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  (7) 
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i o o M
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 


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  

  (8) 

where, α is attenuation coefficient and Lr is the waveguide lengths respectively. 
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where, τM and τx, are the time delays due to the lengths LM and Lx respectively. 
From Eqs. (6), (9), and (10), it can be seen that the three output transfer functions have the 

same denominator, with two complex conjugated poles (Zp and Zp*) which will be described 
later. 

2.1 Output A3 

The transfer function at output A3, see Eq. (6), has two zeros. They are complex conjugated if 
the next relation is fulfilled: 

 
 
 

2

2

1 1 4
;

2 1 2

M M

i

M

K K
K

K




   
 


  (11) 

Otherwise, the zeros are real and different. The position of these zeros in the Z plane, near 
unitary circumference makes a sharper notch filter spectral response. Even the transfer 
function could have theoretically infinite crosstalk when placing them at the unitary 
circumference. 

The module of complex conjugated zeros is given by: 

         
1/2

1 1 1 1 Lr

c i o o MZ K G r e            (12) 

And from Eq. (12), theoretical limit, for infinite crosstalk when placing the zeros at the 
unitary circumference, can be achieved with a gain G given by: 

 
        

1/2

1/2

1

1 1 1 1 Lr

i o o M

G
K r e    


    

  (13) 

The frequency dependence of the zero module through r(Ω), see Eq. (12), can be 
interpreted in the spectral response. It means that it is possible to have a different radial 
position of the zero for each FSR of the ring, by changing the module value and therefore the 

crosstalk (depending on the r(Ω) value) in each period. 
Otherwise, the angular position of the complex conjugated zeros is given by: 

 
     

  

1/2
2 2 2

1

1/2
2

1 1 2
tan

2

i M i M M

z

i M M

K K K K K

K K K
 

 
   

 
   

  
 

  (14) 

and it places the notches of the filter in frequencies given by: 
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 ;
2

z

Gf f k FSR k Z




 
    

 
  (15) 

For finding the zeros module in each FSR, we have to use the frequencies given in Eq. (15), to 

evaluate the r(Ω) in the Eq. (12). 
From Eqs. (14) and (15), we see that using Ki and KM the notches of the spectral response, 

can be placed from –FSR/4 to + FSR/4, from the resonance frequencies of the longitudinal 
modes of the ring, which are fG + k × FSR, for integer k. 

 

Fig. 2. Movement of zeros of the A3/A1 output transfer function, for increasing Ki from 0.05 to 
0.95. α = 2dB/cm, γM = γi = γo = 0.05, KM = 0.26, Ko = 0.05, G = 1 and |r(Ω)| = 1. 

On the other hand, if the zeros are not complex conjugated, the zero modules are different, 
one is greater and the other is less than the value given in Eq. (12). They reach the infinite and 
zero values, in the limit when Ki tends to one. The phases of real zeros are zero, having the 
notch at the resonance frequencies of the longitudinal modes of the ring. In this case we use 

Eq. (15), with φz = 0 to evaluate r(Ω) in Eqs. (12). 
In Fig. 2, it is shown the zero movement in Z plane, for increasing values of Ki from 0.05 

to 0.95. The module of the zeros does not change, different to the phases, when they are 
complex conjugated. They have different values when they are real. In this simulation the 

r(Ω) took a value of one, being these the zeros position for the FSRs inside the central lobe 
of the ideal DG. For FSRs outside the central lobe of the DG, the module of the zeros is less 

due to r(Ω) values, ideally being equal to zero. 

2.2 Output A4a 

The transfer function at output A4a, is shown in Eq. (9). This output always has only one real 
positive zero that can be moved through the positive real axis of the Z plane, by increasing G. 
The value of G that places this zero in the unitary circumference is given by: 

 

          

1/2

1/2
2

1

2 1 1 1 1 1 Lr

M i o i o M M

G

K K K K r e    



      

 (16) 

With this G value, we have a spectral response of a notch filter with theoretically infinite 
crosstalk, located at the resonance frequencies of the longitudinal modes of the ring. This 
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transfer function also has the term z-τx/τ, that arises to take into account the delay between the 
input and output pulses, because of the transit time in Lx. 

2.3 Output A4b 

The transfer function at output A4b, see Eq. (10), has complex conjugated poles, and a zero at 
the origin of the Z plane. This zero is fixed, and only introduces a constant delay in the 
transfer function. Because of these characteristics, against to the outputs A4a and A3; A4b output 
transfer function can be used as an all pole function, for synthesizing filters with real 
coefficients. 

The module and phase of the complex conjugated poles for the three outputs, see Eqs. (6), 
(9 - 10) are given by: 

        1/21 1 1 1 1 ( ) Lr

p M i o i oZ K K G r e               (17) 

 
 

1 (1 2 )
tan

2 1

M

p

M M

K

K K
 

 
  
  

  (18) 

The poles module Zp are frequency dependent, and different of zero only in the central lobe 

of the gratings spectral response, due to term r(Ω) in Eq. (17). This spectral response of the 
diffraction grating must be as close as possible to an ideal passband filter, with a maximum 
reflectivity of one. The frequency dependence of the poles module can be interpreted in the 
same form as the zeros in the previous transfer functions. There is a different radial position of 
the poles, for each FSR. Increasing or decreasing the peaks of the spectral response for each 
FSR. Depending on how far the poles are from the unitary circumference for these FSR. The 

Eq. (19) gives the gain value that locates the Zp in the unitary circumference, which gives 
theoretically infinite crosstalk. 

 
       1/2

1

1 1 1 1 1 ( ) Lr

M i o i o

G
K K r e    


       

  (19) 

The poles frequency dependence is basic for improving crosstalk as it is described in Section 
5. 

From Eq. (18), it can be seen that φp takes values between –π/2 to π/2, meaning that only 
in this margin it is possible to synthesize filters with complex conjugated poles. This could 
seem a drawback, but by increasing the FSR of the filter it can be increased the bandwidth of 
the synthesized filter, while maintaining the desired shape. The peaks position in frequency 
are given by Eq. (15), changing φz by φp. And we must use these frequencies to evaluate 

r(Ω) in Eq. (17), to find the poles module for each FSR. 
The filter can be tuned, adjusting the center frequency of gratings (fG) and the total delay 

time of the ring (τ), by means of the electro-optic effect or thermo-optic effect, heating or 
injecting current in the gratings and in the ring length [19]. The only requirement we should 
care about is making fG to be located in one of the longitudinal resonant modes of the ring by 
any of the physical effects previously mentioned. 

If this in not fulfilled, the poles will not be complex conjugated, appearing the complex 
term ej2πfΔ multiplying each pole (where fΔ is the difference between fG and the frequency of 
the nearest resonant mode of the ring). This term changes the poles position in the Z plane, 
rotating them 2πfΔ·τ radians, and increasing fΔ Hz the peaks position in the spectral response, 
from its ideal position. The module of the poles can also be affected if there is a change in 

r(Ω). Finally, if the spectral response of the DG reflectivity is like an ideal bandpass filter; 
the spectral response will only be displaced in frequency. 
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3. Synthesis Equations 

The synthesis procedure is similar to the one explained in [9], where cascaded second order 
all pole devices are used to synthesize the pairs of complex conjugated poles, an amplified 
ring resonator (ARR), and a lattice filter. In Fig. 3, we see the block diagram of the cascades 
stages. Here we use the MIARR as a second order device, taken the output A4b, an ARR is 
used as in [9], with the same synthesis equations to synthesize the real pole, and a lattice filter, 
explained in Ref. [1]. for synthesizing the zeros. Also in Fig. 3, there is an amplifier stage (A) 
used for compensating the insertion loss due to the MIARR, ARR stages, and by the spectral 
response normalization step, in the algorithm of synthesizing the zeros by the lattice filter 
stage. 

 

Fig. 3. Block diagram of cascaded stages. 

In this paper, in comparison with the design method reported in [9], a different second 
order device is used, the MIARR, having a different set of equations. This device produces a 
non-periodic transfer function, and the poles position in the Z plane can be located, radial and 
angular, by means of, a gain and a coupling coefficient. 

From Eqs. (10), (17), and (18) it can be seen that G, only appears in the poles module, 
making this parameter, ideal to be used for tuning the radial position of the poles. This 
selection is reinforced by the fact that the gratings must have a fix spectral response, and that 
Ki and Ko contribute to the loss introduced by the filter, see numerator of Eq. (10). These 
parameters are not suitable for tuning this radial location. 

For selecting Ki and Ko values, filter loss are minimized once G is fixed. The following 
coupling coefficients are obtained: 

 
1

1
iK









  (20) 

 
1

2
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The value of G is chosen arbitrary; but taking into account that it must be greater than a 
minimum value (Gmin), to have positive Ki and Ko values. This minimum value is given by: 
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  (23) 

Also we have to take into account that, as G increases χ decreases, which decreases the filter 
loss, see Eq. (20) and (21) and numerator of Eq. (10). Anyway, this loss can be compensated 
with the external gain stage A. 

To locate the poles phases, KM is used to change φp, see Eq. (18), to the value needed to 
synthesize the desired poles. The value of KM, for a given pole phase, is given by: 

 
 
 

2
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tan1 1

2 2 1 tan

p

M

p
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


 


  (24) 

In Eq. (24), the positive or the negative sign, can be selected indistinctly, the change in the 
selection only sums π rads in the phase response, see Eq. (10). 

4. Example and Discussion 

For a better comprehension of the ultra-large FSR filter synthesis method, we present a 
detailed filter synthesis example. The desired transfer function (Hd[z]) to be synthesized is 
given by: 

  
2

1 2 3 4

0.0067

1 3.4326 4.5967 2.8336 0.6771

z
Hd z

z z z z



   


   
  (25) 

This is a fourth order transfer function with two pairs of complex conjugated poles, as shown 
in Table 2, which means two stages of the MIARR are needed. The excess loss coefficient γi, 
γo and γM for the three couplers, are equal to 0.025 (0.1 dB/coupler) and the waveguide losses 
are 2 dB/cm [20,21], to simulate a SOI technology device at 1550 nm. To assure a unitary 
delay in the numerator of Eq. (5), in each one of the stages, we choose τM = 0.75τ and τx = 
0.5τ. The waveguide effective refractive index nef is 3.5, the parameters nbef, αb and kb, of all 

the diffraction gratings used in the MIARR stages, are 3.6, 0 m1 and 480 m1, respectively. 
And the ratio FSR to full width at half maximum (FWHM) of gratings is chosen equal to 0.28. 

The design procedure begins calculating the Gmin for each stage; see Eq. (23), in this case 
1.0817 and 0.9215 respectively. After an arbitrary value of G greater than Gmin in the two 
stages is chosen; in this case G is selected to be equal to 2.1. Knowing the complex 
conjugated poles, modules and phases, and using Eqs. (20)–(24) the values of Ki, Ko, and KM, 
for each stage are calculated. The loss introduced by the two stages filter, are then calculated, 
being 0.0052 for G = 2.1, here we can iteratively increase G, repeating the processes until the 
losses are 0.0067, the same value of the numerator of Eq. (25), being not necessary the gain 
stage A to compensate the losses. The final values are summarized in Table 2. 

Table 2. MIARR Parameters Values per Stage; A = 1 

Stage /Zp/ p Gmin G KM Ki Ko 

1 0.9442  ± 0.4299 1.09 3 0.2916 0.47 0.3197 
2 0.8715  ± 0.1760 0.92 3 0.4125 0.53 0.3464 
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Another approximation is to use the minimum possible gain in the rings, see Eq. (23), and to 
compensate the losses by means of the external stage A. In this new approach, the found 
values are summarized in Table 3. Remember G > Gmin, not equal. 

Table 3. MIARR Parameters Values per Stage; G = 1 

Stage /Zp/ p Gmin G KM Ki Ko 

1 0.9442  ± 0.4299 1.09 1.3 0.2916 0.0917 0.0840 
2 0.8715  ± 0.1760 0.92 1 0.4125 0.0409 0.0393 

In this case the loss is 199.5 × 106, then a gain A of 33 should be used, a little more than 30 
dB. These two solutions are extreme, but tailored intermediate solutions can be found, 
showing the flexibility of the design method. 

 

Fig. 4. Spectral response of synthesized Hs[w], desired Hd[w] and gratings transfer functions 
/r(w)/. 

The spectral response of synthesized transfer function (Hs[z]) of the two stages MIARR 
filter, is shown in Fig. 4. A non-periodic transfer function is obtained, synthesized inside the 
diffraction grating bandwidth, also shown in this figure, with the shape of the desired transfer 
function Hd[z] given in Eq. (25), which is also shown in this figure. 

The synthesized filter transfer function shows excellent agreement with the ideal transfer 
function, with a less than 1.3 dB ripple, and a maximum crosstalk of 54 dB. This diminishing 
of the crosstalk from 65 dB of the desired transfer function, to the 54 dB of the synthesized 
transfer function, is due to the lateral lobes of the gratings. 

These can be diminished using apodized gratings, increasing the crosstalk [12]. In Fig. 4 
are shown lateral lobes of the gratings incorporated in the spectral response of Hs[z]. 

As shown in Fig. 4, the synthesized filter has a non periodic spectral response, being his 
FSR very large or even infinite. 

5. Variation of coupling coefficients and poles frequency dependence 

In this section, it is analyzed, how the variation of the coupling coefficients of the couplers, 
due to fabrication tolerances, slightly affects the performance of the filter. It is also analyzed 
the poles frequency dependence in the filter, and its consequences. In all cases, the first filter 
designed in the previous section is used. 

5.1 Variation of coupling coefficients 

The coupling coefficients, for each stage of the MIARR used to synthesize the desired filter 
can vary from their theoretical values. This fact can alter the performance of the synthesized 
filter, changing the spectral response. 
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Fig. 5. Spectral responses of synthesized transfer functions, using the coupling coefficients 
theoretically calculated, and with random ± 5% variations. 

A way to confirm how these variations affect the filter performance is making a random 
variation of all the coupling coefficients (Ks) with a uniform distribution between ± 5% of the 
theoretically calculated values. In Fig. 5, are shown the eleven spectral results after doing this, 
ten with randomly generated Ks, and one with the ideal Ks. The ripple changes to 6 dB in the 
worst case and the crosstalk in less than 8 dB, see Fig. 5, maintaining a crosstalk at least of 
46.5 dB, a very good merit figure. 

These variations also represent changes of the spectral response magnitude of less than 7 
dB in passband, see inset of Fig. 5, and 3.6 dB in the stopband if the worst case is considered. 

5.2 Poles frequency dependence 

The MIARR shows also a singular property, its poles module frequency dependence. As it can 
be seen in Eq. (17), this is due to the gratings reflectivity frequency dependence. This property 
means a better crosstalk for our device. 

To know how the frequency dependence poles improve the crosstalk, we must first know 
the effect of fix poles (non frequency dependent poles) in the spectral response of a discrete 
time transfer function. It is known [22] the spectral periodicity of discrete time systems 
transfer functions. Being dominated the spectral response by the poles position in the Z plane; 
moreover when this is an all pole transfer function, as in our case. If the poles are near the 
unitary circumference the peaks are greater [22], being peaks amplitude inversely proportional 
to the poles distance to the unitary circumference. Appearing in frequencies given by Eq. (15), 
with φz changed by the poles phase φp, see Eq. (18). Now when we calculate the spectral 
response we change z by ejΩτ and rotate the phasor ejΩτ over the unitary circumference, 
calculating the transfer function value for each frequency. The position of the poles is the 
same in each rotation, which means peaks of the same amplitude and in the same frequency 
location by period. Then a periodic spectral response is generated. 

On the other hand, when we have frequency dependent poles, their values change in 
frequency (changing in each rotation), being different in each period (FSR). For an ideal DG 
(box like spectrum), we would have poles with the desired value for FSRs inside of FWHM of 
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DG, and zero value poles for FSR outside it. These poles module change, varies the peaks 
amplitude in and out the FWHM, breaking the spectral periodicity. 

 

Fig. 6. Poles module value for two stages MIARR filter of previous section example, for each 
FSR. FSR 0 correspond to FSR including fG. 

In Fig. 6 is shown the poles module in each FSR, for the two stages MIARR example 
given in the previous section. In this figure, the x axis 0 value corresponds to the FSR 
including the fG. As we can see the poles module diminishes once you move from the 0 FSR 
to greater (or smaller) FSR. This diminishing e.g. in the first stage pole module, from the FSR 
0 to FSR 1, could represent a peak variation of 11 dB. 

The spectral response of the synthesized filter will be equal to that of the desired filter 
inside DG FWHM. But out of it, the poles will move far inside from the unitary 
circumference, see Fig. 6. As a result, there are resonance peaks smaller than the resonance 
peaks inside the DG FWHM, increasing the crosstalk, in comparison e.g. with a cascaded DG 
and a fourth order delay line filter. 
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Fig. 7. Spectral responses of MIARR stages filter, fourth order periodic delay line filter, and 
cascading DG with fourth order filter. 

In Fig. 7, it can be seen the spectral responses of the synthesized filters using the MIARR 
stages, and cascading a DG with a fourth order periodic delay line filter. As we see the 
cascading and MIARR stages spectral responses have the same performance in the 0 FSR, but 

in 1 and 1 FSRs, the cascade filter effect of DG only attenuates the signal 12.8 dB, while the 
MIARR stages filter attenuates the signals in more than 65 dB. This attenuation in mainly due 
to two mechanisms: the poles frequency dependence and the gratings transfer function module 
that appears in the numerator of Eq. (10). As we can see the less value of the poles module in 

the 1 and 1 FSRs, decreases the peaks of the spectral response, increasing the crosstalk, 
while the term in numerator of Eq. (10) acts like a cascaded DG, being responsible of an 
attenuation of 25.6 dB (two stages). The frequency dependent poles are responsible of more 
than 40 dB of attenuation. 

6. Conclusion 

A novel filter synthesis method is reported for designing flexible, tunable, ultra-large FSR 
filters. Filters with flat response, high crosstalk values and low ripple are reported. It can be 
used as part of optical cross-connects for selecting DWDM channels avoiding very restrictive 
FSR (inversely proportional to ring length). Closed equations for poles location and tuning are 
reported. Diffraction gratings structures are designed to suppress the resonances of the RR at 
both sides of the main wavelength. The use of gratings inside RR has allowed for significantly 
enhancing the suppression of resonances inside the simple RR FSR. Isolation values with non-
extracted bands higher than 54 dB and a transmission ripple in the through port less than 1.3 
dB are reported. This filter configuration can also be hitless reconfigured by shifting the 
position of the gratings and RR by changing their refractive index. A novel optical filter 
design method, based on all-poles transfer functions, and allowing the design of any type of 
optical digital filter is also reported. Robutness to coupling coefficient fabrication tolerances 
of the couplers from ± 5% are validated in a specific design. Crosstalk improvement of 40dB 
because of pole frequency dependence in comparison with serial gratings configuration 
outside RR, is also reported. 
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