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Abstract: Trees are resources that provide multiple benefits, such as the conservation of fauna, both
terrestrial and marine, a source of food and raw material, and offering protection in storms, which
makes it practical to understand their behavior against different phenomena. Such understanding
may be possible through process modeling. Studies confirm that mangrove forests can store more
carbon than other forests, influencing the fight against global warming. Thus, a critical and systematic
review was carried out regarding studies focusing on mangroves to collect information on the
models that have been applied and the most influential variables highlighted by other authors.
Applying a systematic search for the most relevant topics related to mangroves (basic as well as recent
information), it is possible to group models and methods carried out by other authors to respond
to certain behaviors presented by mangroves. Moreover, possible structuring of a mathematical
model applied to a species of interest thanks to the analyzed references could provide justified
information to the authorities on the importance of these forests and the benefits of their preservation
and regeneration-recovery.

Keywords: carbon storage; carbon dioxide sequestration; mangrove; mathematical model

1. Introduction

Over the years, concern about climate change has grown to the point where indus-
tries and any other activity are looking for ways to make themselves more efficient and
environmentally friendly. The increase in the Earth’s average temperature causes the
modification of multiple ecosystems, affecting the species subsisting in it and the effect
on the growth of multiple crops due to the carbon dioxide (CO2) concentrations levels in
the air [1]. In addition, the increase in the planet’s temperature stimulates the melting of
permafrost, causing the release of large amounts of trapped CO2 and methane [2]. Trees
play an essential role in the capture and retention of CO2, the gas necessary to carry out
part of its regeneration, growth, and maintenance processes during its life, having the
possibility of increasing their CO2 storage capacity, depending on the conditions of the tree
(humidity, CO2 concentration, nutrients, among others) [3].

This study aims to provide information on the equations that have been used recently to
study the behavior of trees, specifically mangroves, providing information to other readers
about the most relevant works in the determination of stored carbon and the most influential
variables. The research focuses on the works presented in the last five years, including some
works developed outside this limit, to then select the research focused on the retention of CO2
in mangrove ecosystems, trying to show a better panorama of the variables involved than
allowed by more comprehensive assessments of the importance of mangroves.
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Trees near the coasts (in direct contact with salt and fresh water) are called mangroves.
This kind of tree provides multiple benefits for the development of many species and the
humans that live near these coastal areas [4]. These trees have the characteristic of capturing
much more CO2 than the species that are in contact with fresh water (much further from
the coast) due to the characteristics of the soil, but they do not have the same number of
studies due to the lack of accessibility to perform them [4,5]. Mangroves have managed to
adapt to salt water and freshwater ecosystems thanks to the morphological adaptations
they have developed, such as glands that allow them to expel excess salt, detachment of
the seed once mature and ready to settle, and aerial roots for a greater fixation on their
muddy soils, among others [4,6].

Mangroves also protect the coasts from strong winds and waves, dissipating the energy
generated by their physical characteristics (such as their abundant roots and leaves) [4], also
influencing the attenuation of cyclonic winds [7] and carbon fixation both in the soil and
its biomass [8,9]. To survive the extreme environmental conditions, they developed unique
ecophysiological characteristics [10–16] for functions such as leveling the salt concentration
inside, water flow, and gas exchange [17]. In the following sections, various equations
that characterize mangroves are evaluated. Through the evaluation, it was observed that
in many cases, each species of tree has characteristics for which the equations developed
for that species would not precisely give the same results if they were applied in another
species with different configurations.

The text is divided into five main sections; Section 1 contains a brief introduction to
the topic, Section 2 presents the methodology used, Section 3 contains the main results,
and Sections 4 and 5 presents the discussions and conclusions of this research.

2. Methodology
2.1. Literature Search Strategy

This work was based on bibliographic research on the mathematical models that have
been developed to explain specific processes in trees oriented towards mangrove species.
A search was carried out on the research published from 2016–2021 to record updated in-
formation involving mangroves. Two codes were used to extract information regarding the
mangroves to perform the analysis, “(Tree AND Mangrove) AND (Model OR Modeling)”
and “(Tree AND Mangrove) AND (Model OR Modeling AND sequestration)”, named
C1 and C2, respectively, in Figure 1, obtaining a total of 2629 articles. These 2629 articles
were obtained after searching for these keywords on the MDPI, IEEE Xplore, Elsevier, and
Springer platforms (Figure 1), and then a more exhaustive review and evaluation of these
articles was carried out as described in Section 2.2.
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2.2. Bibliometric Analysis

To structure stage 2, Software Rstudio (version 1.3.1093, Boston, MA, USA. Available
online: https://www.rstudio.com/, accessed on 10 June 2021) was used, which, employing
a code, extracted the articles mainly related to the topics of interest of the research such as:
catchment, water flows, sap and/or carbon, carbon dioxide, regeneration, and flooding.

https://www.rstudio.com/
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The code searched the topics of interest in the title, abstract, and keywords of the articles
that were in the database. Among the packages used in the Software are “bib2df” and
“ggplot2.” Analyzing the results generated by the code, a distribution was observed that,
for the most part, corresponds to issues related to CO2, followed by catchment, and flows in
mangroves, as shown in Figure 2. It was also possible to observe the number of publications
that relate CO2 to mangroves according to the database obtained since 2016 in Figure 3.
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The topics most found in the resulting database are structured in Table 1, shown below.

Table 1. Topics found in the database.

Topics Reference

Carbon stored by remote sensing/satellite images [18–33]
Monitoring of stored carbon [5,34–40]

Carbon quantification through literature [41–45]
Mangrove flows [46–49]

Filtration of heavy metals and pollutants [50,51]
Source: Own elaboration.

3. Results: Relevance of Mangroves Modeling to Reap Their Benefits

This section presents the studies found regarding the mathematical modeling of
mangroves’ characteristics or aspects. Only four aspects regarding mangroves’ habilities
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or benefits were found and are classified as follows: depollution, biomass content, carbon
sequestration, and rate of growth.

3.1. Depollution

Regarding depollution, only one reported study was found involving mathematical
descriptions. The study developed by Ray et al. [50] analyzed the purification properties
of the mangrove by performing tests in an empirical model to determine the uptake of
vanadium, tantalum, and niobium in the soil, roots, and leaves of eight mangrove species
by extracting samples from the Indian Sundarbans in the northeast of the Indian penin-
sula. Multiple types of equipment were used in the laboratory to transform the samples
into data that could be used for the following equations (see Table A1 in Appendix A
for nomenclature):

log[metal] = b× δ13C + a (1)

BAF = metallea f+wood+root / metalsediment (2)

TF = metallea f+wood / metalroot (3)

EF =
{
(metal /H f )lea f+wood+root

}
/{(metal /H f )sediment} (4)

The results indicate that there is a retention of these elements in the different parts of
its structure. Such results can be found in the author’s article for the different mangrove
species analyzed. Error or correlation data were not presented in the study.

3.2. Biomass Content

There are multiple studies focused on determining the biomass content in tropical
forests to know the carbon storage capacity they possess, and with this, the importance
they represent in the fight against global warming. Within the studies that focused on
the calculation of biomass, there was a certain tendency regarding allometric models that
involved measurements in the field for their use, mostly the product of correlations between
the variables. Such is the case of Lozano [17], Mohd Zaki et al. [52], Da Motta et al. [53],
Van Vinh et al. [54], Simpson et al. [55], and Chatting et al. [56], among others, who did not
use the same equations but had variables in common (see Table 2).

Table 2. Allometric equations focused on the determination of aboveground biomass.

Author Equation Species T (◦C)

Mean
Annual
Rainfall

(mm y−1)

Mohd zaki et al. [52] AGB = exp[[−1.803− 0.976× E + 0.967× ln(ρe) + 2.673× ln(DBH)− 0.0299×[ ln(DBH)2]]] (5) L.t.t.s. 22.9–27.7 2178

Da Motta et al. [53] AGB = 0.251× ρe × DBH2.46 (6) L.r.—R.m.
A.s. - 1320

Van Vinh et al. [54] AGB = 0.38363× DBH2.2348 (7) R.a. 27 1800

Simpson et al. [55] ln(AGB) = 1.63× ln(D0) + 1.3545× ln(H)− 2.8853 (8) L.r.–A.g.
R.m. 21–29 -

Chatting et al. [56] log(AGB) = 2.14× log(CD) + 0.20
CD = 0.3831× DBH + 0.6863 (9) A.m. - 54

Kelleway et al. [57] AGB = h×[0.214×(DBH×π)−0.113]2

10
(10) A.m. - 1084

Clough et al. [58] Log (AGB) = A + (B× Log(DBH)) (11) R.s.–A.m. 35 1750

Prasanna et al. [59]
V = h

6 × (Aba + 4× Am + At) (12)
A.m. 28–34.2 -

Ldb =
i

∑
j=1

nj × Lwj × Nj
(13)

Bdb =
i

∑
j=1

nj × bwj
(14)

Makinde et al. [60] AGB = e(−3.1141+0.9719 ln (DBH×h)) (15) T.g.–G.a.
I.e. - 1850

With: L.T.T.S. (lowland tropical tree species), L.R. (Laguncularia racemosa), R.a. (Rhizophora apiculata), A.g. (Avicennia germinans),
R.m. (Rhizophora mangle), A.s. (Avicennia schaueriana), A.m. (Avicennia marina), R.s. (Rhizophora stylosa), T.g. (Tectona grandis), G.a.
(Gmelina arborea), and I.s. (Indigenous species [60]). Source: Own elaboration.
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Mohd Zaki et al. [52] presented equations that help reduce uncertainty when estimat-
ing carbon stored in forests, including equation (5) (Table 2), calculating the aboveground
biomass (AGB) using remote sensing and non-linear regression equations in tropical low-
land. The study was carried out in Hutan Simpan Ayer Hitam, a Malaysian forest reserve,
which had information collected since 2013, and then the researchers carried out another
more recent scan and thus completed the information necessary to apply the study. The
equation used considers the density of tree species (ρe), as well as the diameter at breast
height (DBH). Within the results, there were slightly low values in the determination coeffi-
cient (R2 = 0.453) between the existence of carbon and the crown projection area, although
its correlation turned out to be higher (0.671), attributing the values to the irregularities
present in the canopy of the forest being studied.

Da Motta et al. [53] carried out a study in southeastern Brazil on the banks of the
Piraquê-Açu river to determine the AGB and the carbon stored by the mangroves. They
were able to obtain results by using allometric equations such as (6) (Table 2), taking
measurements in the trees present in an area of 600 m2 and soil samples to identify aspects
such as humidity, permeability, and granulometry, among others. This study obtained
2.92 tons of AGB per hectare (t ha−1) and 1.46 t ha−1 of carbon, with a coefficient of
determination, for the mangrove species Laguncularia racemosa, which was satisfactory for
the author (R2 = 0.89). For the determination of AGB, an equation involving the density
of the wood and the DBH was used, while for the stored carbon, the literature was used
depending on the type and quantity of species found in the analyzed area.

Van Vinh et al. [54] focused their research on mangroves in Southern Vietnam, with
the objective of determining the stored biomass through a proposed allometric equation
(Equation (7)) that involves DBH, resulting in values between 59.7 and 230.9 mgC ha−1.
Additionally, distributions of carbon storage in biomass were assigned: 77.11% for the
trunk, 11.87% for the branches, and 11.02% between roots and leaves with a coefficient of
determination R2 of 0.976 with a standard error value of 1.17. Simpson et al. [55] worked
on the Atlantic coast of Florida, USA to identify the three-year changes concerning carbon
storage due to the invasion of mangrove species in marsh areas thanks to Equation (8), using
height of the tree in centimeters (H) and the diameter just after the soil surface (D0). This
work did not present correlation data or percentage of error. Chatting et al. [56] analyzed a
mangrove area in Qatar, where the species Avicennia marina was prevalent, generating the
Equation (9) used to determine the existing AGB by means of crown diameter (CD) and
DBH. The equation used to determine AGB had a correlation coefficient of 0.94, while the
equation used to convert DBH into CD had R2 = 0.53.

The data collection for Mohd Zaki’s work was carried out through non-destructive
testing, unlike the study developed by Kusmana et al. [61], who conducted destructive tests
on 30 tree samples in the mangroves of Cilacap, Indonesia. Within the study, the equations
developed to obtain values of aboveground and underground biomass of the mangrove
species Sonneratia spp. were observed, which required the DBH, height in meters (h), and
density of the wood. For their part, Kelleway et al. [57] analyzed two mangroves located
in marshes in southeastern Australia to quantify changes in mangrove migration to areas
corresponding to salt marshes over 70 years. Aerial photographs from different years were
used to make comparisons in vegetation, together with field measurements to determine
AGB through allometric equations (Equation (10)) using height and DBH. The model was
used in two places, obtaining a unified R2 value of 0.603. Clough et al. [58] also provided
experimental expressions for estimating AGB in mangroves on the north and west coast
of Australia (Equation (11)) to determine the differences in the amount of biomass that
exists due to environmental variations with DBH and height. The model used varied in the
correlation coefficient depending on the species analyzed: for Rhizophora stylosa, there was
an R2 of 0.96 with a standard error of 0.090, while for the Avicennia marina, there was an R2

of 0.969 with a standard error of 0.091.
Prasanna et al. [59] applied Equations (12)–(14) in the Karankadu mangrove swamp

in southeastern India. These equations were sectioned in a tree to analyze each biomass
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contribution and then summations were applied, taking into account the base, middle,
and top areas of the trunk (Aba, Am, and At, respectively), dry leaf biomass (Ldb), and
dry branch biomass (Bdb). A positive correlation was obtained between AGB and DBH
(R2 = 0.960), but it was not significant with respect to height (R2 = 0.349).

Makinde et al. [60] applied geospatial techniques to determine the aboveground and
underground biomass through the non-destructive method, interpreting the information
provided by said method and applying Equation (15). In Table 2, it is possible to observe
the allometric equations, mainly focused on the estimation of AGB.

The aforementioned works ([17,52–61]) used equations that estimate the AGB of a single
tree. To determine the AGB of a forest, it will be necessary to carry out an inventory to obtain
the measurements and then multiply by the number of trees. In Table 3, the parameters most
used by the different authors for the determination of AGB can be observed.

Table 3. Parameters used in the equations to determine the AGB.

Reference

Parameter [52] [53] [54] [55] [56] [57] [58] [59] [60]

DBH ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
D0 ∗
E ∗
ρe ∗ ∗ ∗
H ∗

CD ∗
V ∗
h ∗ ∗

Source: our elaboration.

3.3. Carbon Sequestration

Thanks to an inventory developed by the Management Plan of the Guapi-Iscuandé
Integral Management Unit (UMI) in Colombia, Lozano [17] managed to apply an empirical
model to determine the CO2 fixed in the selected mangrove, by means of Equation (18),
shown in Table 4. For their part, Marchio et al. [62] selected two mangrove streams in
southwest Florida, with the difference that one of these streams was hydrologically altered
by human presence (dredging, channeling, polluted stormwater, compartmentalization
of water flows, etc.) to determine the differences between carbon sequestration and the
properties of sediments in mangroves once they are disturbed, thanks to Equation (17). As
a result, it was possible to show the negative impact in terms of carbon sequestration as a
result of the modification of its ecosystem. Neither paper presented had information on
the percentage of error or correlation.

Table 4. Allometric equations focused on other objectives mangrove.

Author Equation Species T
(◦C)

Mean Annual
Rainfall (mm y−1) Objective

Lozano [17] C f = K× Ab ×
[
Bi +

(
Gy × t

)]
(16) R.s.–A.m. 26 - Carbon

sequestrationMarchio et al. [62] Cseq = Ad × BD× Cconc (17) A.g.–L.r. R.m. 23.6 1346

Chatting et al. [56] log(BGB) = 2.67× log(CD)− 0.11 (18) A.m. - 54 below ground
biomassMakinde et al. [60] BGB = 0.2× AGB (19) T.g.–G.a. I.e. - 1850

Rodriguez et al. [6] AG =
Gy×DBH×

(
1−DBH×H

DMax×HMax

)
274+3×b2−4×b3×DBH2 × S× n× te × rel

(20) R.m.–A.g. L.r. 26.6 2300 Annual
mangrove growth

Source: Own elaboration.

Table 4 presents the allometric equations applied to the determination of carbon
storage in other sections of the mangrove, as well as an equation focused on the growth of
mangroves.
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3.4. Rate of Growth

Among the works focused on growth is Rodríguez et al. [6], which was developed in the
Ciénaga Grande de Santa Marta mangroves in Colombia. A code written in “C” language
was used with 16 years of information-gathering through monitoring. An individual-based
model (IBM) was applied because it generates quite accurate results, taking into account how
variable and complex mangrove ecosystems are according to the author, using Equation (20)
(Table 4) analyzing three mangrove species: Laguncularia racemosa, Rhizophora mangle, and
Avicennia germinans.

Once the model was applied in the selected areas, it was possible to observe how
vulnerable the species were to high concentrations of salinity, unlike Avicennia germinans,
which continued to grow and produce new seedlings over time. In the end, the model
presented the increase in the basal area that would be expected in the following years,
varying the concentration of salinity or maintaining them. The work did not present
information on percentage of error or correlation.

In order to better understand the equations presented, dimensional analysis was used
to verify dimensional homogeneity, as well as the interrelationships of the quantities that
compose them. The Rayleigh method was applied to each of the equations as shown below:

AGB = exp[[−1.803− 0.976× E + 0.967× ln(ρe) + 2.673× ln(DBH)− 0.0299×[ ln(DBH)2]]]

AGB = f (ρe, DBH)

with AGB (kg), ρe (g·cm−3), and DBH (cm). Following the steps of the Rayleigh method,
the fundamental dimensions were used:

AGB = α× ρe
a × DBHb

M = M0 ×
(

ML−3
)a

Lb

where M is for mass, L for length, and t for time. Developing for M and L, we obtained
a = 1 and b = 3.

Then:
AGB ∝ ρe × DBH3

This procedure was carried out for each of the equations presented in Tables 2 and 4,
but not all of them achieved a consistent result; however, it is to be expected that some
expressions do not make physical dimensional sense among the variables they relate to.
The results of the dimensional analysis are presented in Table 5.

Table 5. Dimensional analysis of equations.

Equation Parameters Fundamental Dimensions Result Using Rayleigh’s Method

(5)
ρe, DBH M, L AGB ∝ ρe × DBH3

(6)

(12) h, Aba, Am, At L V ∝ h×Aba×Am
At

(13) Lwj M Ldb ∝ Lwj

(14) bwj M Bdb ∝ bwj

(16) Ab, Bi, t M, L, t C f ∝ Bi

(17) Ad, BD, Cconc M, L, t Cseq ∝ Ad × BD

(19) AGB M BGB ∝ AGB
Source: Own elaboration.

4. Discussion

The conditions in which the works are carried out turn out to be influential when
making comparisons or selecting a model to replicate it elsewhere. Precipitation, as well as
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the temperature and fresh water that reaches the mangrove, help to stabilize the salinity of
the environment, in this way the trees do not suffer from physiological stress, which would
reduce the carbon retention capacity of the forest [62].

The authors agreed on the use of the variable DBH when determining AGB. However,
all these expressions (Tables 2 and 4) result from experimental correlations and may limit
their implementation in studies with different conditions and species. This means that
each author who wishes to study or determine AGB for a certain mangrove species may
have to carry out the process to obtain their corresponding regressions before estimating
the total AGB in the mangrove. In fact, it could be said that only Equations (12–15) do not
seem to depend strictly on a case study to obtain a way to estimate AGB. This is because
they use common variables to any mangrove species and mangrove distribution. However,
the foregoing does not exonerate us from the need to measure the diameter and height of
the mangrove by incurring invasive studies of the mangrove ecosystem.

Moreover, most of the expressions indicated that the relationship between AGB and
DBH is not linear. They show that the amount of AGB available increases exponentially
when the DBH value increases, which leads us to infer a maximum amount of AGB; even if
the DBH increases, the AGB available might not be significantly higher as one may expect.
Moreover, these equations indicate that any amount of AGB cannot be obtained when DBH
equals zero as expected, except for Equations (9), (12), and (17), but the resulting AGB
value remains irrelevant.

The relationship between AGB and H (or h) seems to be less critical for the analyzed
studies, except for Equations (8), (10), and (15). In the case of Equation (8), they used height
to structure their equation because the species in the study area did not exceed 1.3 m in
height to work with the DBH, so they decided to work with the diameter of the trunk right
after the ground surface and its height. In Equation (10), the level of accuracy could be
increased if the height of the tree was included since, in this study, there were trees above
2 m in height. It is not possible to say the same for Equation (15) because they did not work
with mangroves. Instead, other morphologies and different dimensions were employed,
and thus, the height could play a fundamental role in determining AGB.

The fact that CD is less considered in the estimation of AGB could indicate that the
use of DBH considerably simplifies the calculations for obtaining the AGB. Such a selection
could reduce the number of processes to be performed for the final determination of the
AGB. This estimate would contribute greatly to show the importance of these forests
in the fight against global warming through carbon sequestration and the benefits for
marine fauna.

The structures of Equations (6) and (7) differ in the participation of the density of the
tree species analyzed. For Equation (7), it is not important to consider density since they
only focused on one mangrove species, in this case, Rhizophora apiculata, while Equation (6)
was developed for three mangrove species. Hence, it would give a greater approximation
of the aerial biomass if the density of the analyzed wood was considered.

Comparing the equations for carbon sequestration, it was observed that Equation (17)
appears to be much more complete because it accounts for the carbon present in the soil
Cconc, while Equation (16) focuses only on the AGB. However, if Equation (19) is considered,
a less complicated approximation of the total uptake could be obtained by finding the AGB
with Equation (17) and then assigning 20% to the soil carbon [60]. Equation (20) handles
the same growth parameter as Equation (16). Such growth variable of the analyzed species
focused mainly on determining the annual growth of mangroves and accounts for both the
DBH and height.

The results in Table 5 indicate the proportionality of the dependent variables com-
pared to the independent ones. For Equations (5) and (6), we saw that AGB is directly
proportional to ρe and proportional to the cube of DBH. In Equation (12), we saw that
V is proportional to h, Aba, and Am, but inversely proportional to At. For the case of
Equations (13), (14), and (19) there is a proportionality with respect to the only parameter



Sustainability 2021, 13, 6970 9 of 13

that composes it. The result of Equations (16) and (17) show the proportionality between
the most influential parameters that comprise it.

The models found do considered relevant parameters for AGB; however, they do not
follow physical relationships entirely as suggested by the dimensional analysis. Most of
the allometric equations found did not present dimensional homogeneity in terms of the
dependent and independent variables. This leads to the conclusion that the authors did not
seek a relationship that would first fulfil the physical dimensionality between dependent
and independent variables, but rather functional relationships based purely on statistical
foundations. The latter contradicts what Heusner stated in 1987: the physical dimensions
of allometric expressions are of great importance, specifically the proportional coefficient
relating the dependent and independent variables (alpha) [63]. In this regard, Morgado and
Günther, in 1990, stated that “allometric equations only deals with two variables at a time,
despite the fact that all biological processes are more likely to be of multivariate nature,
and non-physical factors may influence the physical variables which are investigated”;
however, it was stated years before (1984) by Schmidt-Nielsen that “dimensional analysis
of physics can not be applied to the results of many biological measurements that are
expressed in allometric form”.

5. Conclusions

This investigation presents a critical and systematic review of the aspects considered
when modeling mangrove flux processes and environmental interactions. A total of
15 studies were analyzed, where 1 was related to depollution, 11 to biomass content, 1 to
a rate of growth, and 1 to carbon sequestration. Each of the models encountered was
analyzed regarding mangroves’ characteristics (i.e., linearity and similarities).

Among the analyzed studies, it is recommended to use the diameter of the crown
instead of the DBH to have more accurate estimates, which represents a quite controversial
assumption since most equations found for the determination of aerial biomass use the
DBH in their calculations. In this case, it is necessary to consider the level of precision
wanted to consider modifying the equation, depending on the diameter of the crown.

The variables necessary for structuring a complete model were identified, from simple
measurements such as DBH to the determination of concentrations in the soil, density, and
others. It will be necessary to reevaluate the variables that should be obtained, depending
on the influence they have on the total value of AGB, in order to be more efficient in terms
of equipment and time needed in the modeling processes.

The importance of complying with physical dimensionality lies in the fact that the
models can be replicable for different species because they take into account intrinsic
characteristics of each species such as its density, for example. Including volume, diameter,
and height does not characterize a species. This can be achieved by combining the above
with correlation analysis. Looking for relationships based solely on statistics indicates,
among several things, that we are not concerned with knowing the complete physical
relationship between these two variables. It is like a black box model.

It is possible to show the importance of studies to estimate CO2 capture and storage,
providing information to governments and other researchers to structure new analysis
plans based on models, and not by the traditional invasive destruction method, seeking
preservation and recovery of mangrove ecosystems while the information regarding these
ecosystems continues to increase. In this way, mangrove forests can continue to mitigate
the problems of global warming.
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Appendix A

Table A1 with information on parameters used in the different equations shown in
this research.

Table A1. Parameters used in the equations presented.

Parameter Definition Units Source

AGB aboveground biomass kg -
AG annual mangrove growth - [6]
A, B constant - [58]
Ab forest area ha -
Ad accretion rate obtained by the radiometric system cm · y −1 -

Aba, Am, At base, middle, and top areas m2 -
b trophic magnification slope - [50]

BD average bulk density g-soil · cm −3 -
BAF bioaccumulation factor - [50]
BGB below ground biomass kg -
b2 growth constants of the species - [6]
b3 growth constants of the species - [6]
Bi initial biomass in the area ton -

Bdb dry branch biomass kg -
bwj average weight of the branches kg -
CD crown diameter m -

Cconc average concentration of carbon in the soil g-C · g-soil −1 -
Cf fixed carbon ton -

Cseq carbon sequestration g-C · cm −2 · y −1 -
DBH diameter at breast height cm -
D0 diameter just above the soil surface cm -

DMax maximum diameter of the species cm -
E bioclimatic variables - [52]

EF enrichment factor - [50]
G annual growth rate - [17]
Gy growth constants of the species - [6]
h stem height m -
H stem height cm -
Hf hafnium - [50]

HMax maximum height of the species cm -
K carbon in biomass (45%) - -

Ldb dry leaf biomass kg -
Lwj average dry weight of extracted leaves kg -

n effect of nutrients - [6]
nj number of branches in each tree - -
Nj number of trees - -
rel effects of light intensity - [6]
S effect of salinity - [6]
t time y -

TF translocation factor - [50]
te temperature effects - [6]
V volume of stem biomass m3 -

δ13C stable carbon isotope - [50]
ρe tree species density g · cm−3 -

Source: Own elaboration.
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