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Abstract: This paper proposes a sequential masking algorithm based on the K-means 

method that combines RGB and multispectral imagery for discrimination of Cabernet 

Sauvignon grapevine elements in unstructured natural environments, without placing any 

screen behind the canopy and without any previous preparation of the vineyard. In this 

way, image pixels are classified into five clusters corresponding to leaves, stems, branches, 

fruit and background. A custom-made sensory rig that integrates a CCD camera and a 

servo-controlled filter wheel has been specially designed and manufactured for the 

acquisition of images during the experimental stage. The proposed algorithm is extremely 

simple, efficient, and provides a satisfactory rate of classification success. All these 

features turn out the proposed algorithm into an appropriate candidate to be employed in 

numerous tasks of the precision viticulture, such as yield estimation, water and nutrients 

needs estimation, spraying and harvesting. 

Keywords: multispectral imagery; precision viticulture; Cabernet Sauvignon;  

optical filters; image processing; classification; K-means 
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1. Introduction 

Precision viticulture is a concept that is beginning to have an impact on the wine-growing sector of 

numerous countries such as Australia, Argentina, Chile, South Africa, USA, Spain, France and 

Portugal [1]. Precision viticulture research seeks, in essence, the same main objective of precision 

agriculture, that is to render production more cost-effective, maximizing crop yield and quality, while 

reducing environmental impacts [2,3]. One of the fundamental steps for the success of precision 

viticulture is the capture and processing of data related to the structure of the plants. From this 

information, grape yield maps can be extracted for the viticulturists or vineyard managers, giving them 

room for manoeuvre during the growing season, and opportunity of making more informed business 

decisions, such as planning logistics harvest and market preparation [4,5]. Furthermore, accurate 

determination of different elements of the plant can be utilized as input for obtaining greater efficiency 

in mechanized operations such as irrigation, spraying, pruning and harvesting [6–9]. On the other 

hand, the geometrical structure of a plant canopy determines its interaction with fluxes of energy. 

Canopy architecture and density are intimately related to crop productivity since the distribution of leaf 

and non-leaf surfaces influences sunlight interception and subsequent carbon assimilation and water 

loss [10]. Therefore, measurement of foliage can be very useful for estimating water and nutrients 

needs of grapevines [5,11]. 

In the last years, several studies aiming to provide automatic detection of grapevine elements for 

different applications, have been reported in the literature. In [12] the authors propose a method for 

detection of grapes in outdoor images using Zernike moments and colour information, and a support 

vector machine for the learning and recognition steps. Grape cluster and foliage detection algorithms 

are proposed in [13] for an autonomous selective vineyard sprayer. The algorithms were developed 

considering pesticide reduction as the main parameter while maintaining a minimum value of grape 

clusters detection rate. Shape and visual texture algorithms are proposed in [14] to detect grape berries. 

Berry detections are then counted and the eventual harvest yield is predicted. In [5] colour and local 

3D shape reconstruction are utilised for identification of plant structure. A multi-class support vector 

machine classifier is then trained to classify 3D points into three semantic classes that are berry, branch 

and leaf. A system for detection and location, in natural environment, of bunches of grapes in colour 

images is also described in [15]. For detection, the system counts the number of pixels that are inside 

the limits of Red, Green and Blue components (044, 051, 064), (033, 041, 054), (055, 062, 075), and 

(018, 024, 036), for red grapes, and (102, 108, 089), (095, 104, 085), (076, 090, 078), and (083, 089, 

038) for white grapes. These four centre values (colours) are experimentally determined (by trial and 

error) during the experimental phase. In [16] a tactile sensing technique is employed to haptically 

recognise grape stems by means of a multi-link manipulator. A supervised classifier based on the 

Mahalanobis distance is applied in [17] for characterising the grapevine canopy and assess leaf area 

and yield using RGB images. The method automatically processes set of images, and calculates the 

areas corresponding to seven different classes (grapes, wood, background, and four classes of leaf, of 

increasing leaf age). Each class is initialised by the user, who selects a set of representative pixels for 

every class in order to induce the clustering around them. 

On the other hand, some systems that made use of the spectral differences in fruits and leaves have 

been successfully used in the past to identify fruits on plants [18,19]. In [18] a high detection rate of 



Sensors 2013, 13 7840 

 

 

cucumber fruits is achieved by combining the images acquired by two cameras, one equipped with an 

850 nm filter and the other with a filter in the 970 nm band. In this case, whereas leaves show 

approximately the same reflectance at 850 nm and 970 nm, the reflectance of cucumber fruits is at  

850 nm significantly higher than at 970 nm. A multispectral analysis is also carried out in [19] to 

enhance citrus fruit detection. Principal component analysis was used to transform the multispectral 

images and to identify the wavelengths that could improve detection of fruit from the canopy 

background. The first three bands with the best performance were 650 nm, 600 nm and 700 nm. Unlike 

the two previous works in which only fruits were identified, the research presented in [20] proposes the 

utilization of a multispectral system for classification of sweet-pepper plant parts grown in 

greenhouses. Band-pass filters with centre wavelengths of 447 nm, 562 nm, 624 nm, 692 nm, 716 nm 

and a long-pass filter that blocks wavelengths lower than 900 nm were selected for the study. 

This paper presents an automatic system that combines RGB and multispectral imagery for 

discrimination of Cabernet Sauvignon plant elements in natural environments, and without placing any 

screen behind the canopy. The system consists of a compact custom-made sensory rig that integrates a 

CCD camera and a servo-controlled filter wheel for the acquisition of images and a sequential masking 

algorithm based on the K-means method that classifies the pixels into leaves, stems, branches, fruits 

and background. The proposed system is intended to be used in an autonomous robotic system, 

without previous preparation of the vineyard. The rest of the paper is organised as follows: Section 2 

describes the sensory rig that has been designed and manufactured for the acquisition of images, as 

well as the sequential masking algorithm proposed for the classification of the Cabernet Sauvignon 

plant elements. Section 3 presents the results obtained from the experimental tests, and in Section 4 

results of this work are discussed. Finally, major conclusions and lines of future extensions are 

summarised in Section 5. 

2. Materials and Methods 

2.1. Sensory Rig 

Commercial digital colour cameras usually include an interlaced set of red, green, and blue filters 

over its pixels, known as the Bayer pattern. These three filters, which makes the times of the three 

colour-sensitive cones in the human eyes, enable that an image can be restored realistically on many 

devices [21–23]. However, RGB imaging also suffers from some drawbacks, such as limited spectrum 

coverage and dependence on the environmental conditions. These drawbacks are clearly exhibited in 

the colorimetric phenomenon called metamerism, which is the matching of apparent colour of objects 

with different spectral power distribution. This indicates that there exist different spectral power 

distributions that sometimes get the same colorimetric representation [23–25].  

In order to alleviate these limitations, a multispectral system is proposed to complement the RGB 

image acquisition. In this way, the proposed system will enable to increase the number of spectral 

samples in the visible and the near-infrared range, and the performance of the classification algorithms 

will be improved. The system consists of a Prosilica GC2450 camera utilised in both RGB and 

monochrome mode, a custom-made filter wheel and a servomotor that is responsible for the accurate 

positioning of the filter wheel (see Figure 1). This positioning can be achieved with a maximum 
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angular velocity of 40 rpm and a position error of 0.001°. Although the filter wheel allows 

interchanging up to six optical filters, in this application only three band-pass filters with centre 

wavelengths of 635 nm, 660 nm and 880 nm are utilised. In addition, one position will be reserved for 

the acquisition of RGB images.  

Figure 1. (a) Proposed acquisition system; (b) Filter wheel layout. 

 

Selection of these filters is based on several considerations. Firstly, it is well documented in the 

literature that all photosynthetic plants, including grapevines, are characterised by a low reflectance in 

red wavelengths (600 nm–700 nm) because chlorophylls (and related pigments) absorb much of the 

incident energy for the photosynthesis. On the other hand, in the near-infrared wavelengths  

(700 nm–1,300 nm) photosynthesising plants reflect large proportions of the incident sunlight [26–28]. 

In addition, bands between 635 nm and 680 nm have the largest contrasts between leaf and soil 

reflectance [29,30]. Therefore, from the reviewed literature, red and near-infrared wavelengths are 

suitable candidates for improving the process of discrimination among the different elements that 

compose a typical vineyard scene. Secondly, a hyperspectral study was conducted in laboratory conditions. 

The utilised pushbroom hyperspectral system consists of an objective lens, an ImSpector V10E 

spectrograph, a Pulnix TM-1327GE CCD camera and a DC-regulated 150 watt-halogen light source 

which provides intense, cold illumination. This system enables to record 200 spectral bands in the 

visible and near-infrared region between 400 nm and 1,000 nm, with 3 nm between contiguous bands. 

Then, several samples of the elements that will be discriminated by using the images acquired with the 

band-pass filters were spatially scanned, in such a way that we acquired a sequence of line images in 

which a complete spectrum is captured for each pixel on the line. Figure 2 shows the resulting images 

for leaves at 635 nm and 750 nm. With the acquired information, a spectral signature was obtained for 

each element of the vineyard that is intended to be discriminated by using the images acquired with the 

band-pass filters (see Figure 3). These elements are branches and stems, leaves and soil. Bunches of 

grapes are not included, since they will be discriminated by utilising the RGB images. From these 

signatures, the ratios of leaves-to-soil and stems-to-soil were calculated, and it was confirmed that the 

largest contrast of the soil with the rest of elements is attained between 630 nm and 690 nm.  
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Near-infrared wavelengths also appear as good choices for discriminating stems from leaves. 

Moreover, the two wavelengths that offered the most different relative reflectances from the studied 

elements were around 676 nm and 886 nm. Feature reduction was also achieved by using Principal 

Component Analysis. The result from this procedure provides three wavelengths that can be selected 

for the representation of the principal components, which are: 676 nm, 758 nm, and 886 nm. 

Therefore, taking into account all these results and the commercial filters available in the market, a 

band-pass filter that has a centre wavelength of 635 nm was chosen to discriminate grapevines (leaves, 

stems and branches) from background (mainly soil and sky), a band-pass filter that has a centre 

wavelength of 880 nm was selected for discriminating the stems from the leaves, and finally, a  

band-pass filter that has a centre wavelength of 660 nm was picked for discriminating leaves from the 

remaining unclassified elements.  

Figure 2. Narrow band images of grapevine leaves. (a) Image at 635 nm; (b) Image  

at 750 nm. 

 

(a) (b) 

Figure 3. Spectral signatures. 
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2.2. Algorithm Description 

Classification techniques can be grouped into supervised and unsupervised [31–33]. Supervised 

classification uses a priori information inferred from examples, supposing to know to which class they 

belong, without any a priori definition of similarity. It is a result of an iterative procedure, which tries 

to find a mathematical formalism to reproduce the expert’s way of assigning class memberships to 

patterns. The iterative process is often referred to as training or learning phase of the classifier. Besides 

this, parameters governing operational characteristics of the classifiers have to be identified by trial 

and error or by optimization procedures. Once trained, the classifier is then used to attach labels to all 

the image pixels according to the trained parameters [34].  

Contrariwise, in unsupervised methods, the characteristics of the classes are unknown, so the 

classification algorithm explores the image and compute clusters that represent groups of pixels  

with similar spectral properties. Therefore, unsupervised classification is based on a suitable definition 

of similarity between patterns rather than on a priori knowledge of their class membership. The task  

of unsupervised classification can be formulated as finding groups with a minimum degree of 

heterogeneity, being most distant from each other. The degree of heterogeneity is defined as a  

distance measure, such as the Euclidean distance, the Mahalanobis distance or the adaptive 

determinant criterion [34]. 

In an unstructured outdoor scenario such a vineyard, the colour of the illumination (i.e., daylight) 

varies with the time-of-day (sun-angle), cloud cover and other atmospheric conditions. Consequently, 

at different times of the day, under different weather conditions and at various positions and 

orientations of the targets and the sensory system, appearance of the objects could seem different [35]. 

This fact can hinder not only a prior identification of the features that correspond to the elements of a 

given class, but also, the selection of regions of interest for preparing the training set. For these 

reasons, the algorithm proposed in this paper is based on the K-means, one of the most popular and 

efficient unsupervised method [36–38]. K-means method use K prototypes, the centroids of clusters, to 

characterise the data. They are determined by minimizing the sum of squared errors:  

            
 

    

 

   

 (1) 

where             is the data matrix,              
 is the centroid of the cluster    and    is 

the number of points in    [39–41]. The steps of the proposed sequential masking algorithm based on 

the K-means method are the following. 

Firstly, the K-means clustering algorithm is applied to the image acquired with the optical  

band-pass filter that has a centre wavelength of 635 nm, in order to partition pixels into two mutually 

exclusive clusters, the background and the foreground. Background includes the sky, the ground, and 

the weed, whereas the foreground embraces all the elements of the grapevine. Every pixel in the image 

is labelled in accordance with the cluster index assigned by the K-means procedure. A binary image is 

obtained from this preliminary result, and a morphological procedure is applied to remove small areas 

in the background, attaining in this way, the first mask (mask 1). This mask is applied to the RGB image 

and the images acquired with the optical filters whose centre wavelengths are 660 nm and 880 nm.  
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Next, the RGB image is transformed to L*a*b* colour space that consist of a luminosity layer ‘L*’, a 

chromaticity-layer ‘a*’ indicating where colour falls along the red-green axis, and a chromaticity-layer 

‘b*’ indicating where the colour falls along the blue-yellow axis [42,43]. Since all the colour 

information exists in the ‘a*b*’ space, K-means is applied to classify the colours in ‘a*b*’ space into 

four clusters, which should correspond to stem and branches, leaves, fruits, and background. However, 

from these four clusters, only one is considered as final solution, the fruits cluster. After this 

procedure, a morphological operation to remove very tiny areas inside bunches of grapes is carried out, 

and one additional mask is obtained (mask 2). This second mask is then applied to the images acquired 

with the optical filters whose centre wavelengths are 880 nm and 660 nm, and K-means is utilised to 

classify the remaining unmasked pixels of the image of 880 nm into three groups: stems, branches and 

leaves. In this step, only the stem cluster (mask 3) is considered as valid and utilised for the generation 

of the third mask that is applied to the image acquired with the optical filter whose central wavelength 

is 660 nm. Then, K-means is employed by last time in order to classify the remaining unmasked pixels 

of the 660 nm image into three groups that are leaves, branches and all previously masked pixels. 

Finally, every pixel belonging to the leaves and branches clusters is labelled according to the  

cluster index provided by the K-means procedure, whereas the other remaining pixels are labelled 

according to the three mask obtained in the previous steps, corresponding to the background, fruits and 

stem clusters.  

It also has to be mentioned that a one-time pre-processing step was required for assigning proper 

labels to the cluster indexes provided by the four K-means procedures that are applied throughout the 

proposed sequential algorithm. Therefore, assignment of labels rests on thresholds that are related to 

the K clusters centroid locations. Table 1 summarises the steps of the proposed algorithm. 

Table 1. Summary of the proposed algorithm. 

Step 1 

Input: image acquired with the optical filter whose centre wavelength is 635 nm 

 K-means clustering 

Output: 2 clusters representing the background and the foreground (binary image with 

2 clusters) 

Step 2 

Input: binary image  

 Morphological procedure to remove small areas in the background 

Output: background mask (mask 1) 

Step 3 

Input: RGB image and the images acquired with the optical filters whose centre 

wavelengths are 660 nm and 880 nm.  

 Masking of the three images (using mask 1) 

Output: RGB, 660 nm and 880 nm images with the background masked 

Step 4 

Input: RGB image (with mask 1)  

 Colour space transformation 

Output: image in the L*a*b* colour space 
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Table 1. Cont. 

Step 5 

Input: colours in ‘a*b*’ space 

 K-means clustering 

Output: binary image with fruits cluster 

Step 6 

Input: binary image with fruits cluster 

 Morphological procedure to remove small areas inside bunches of grapes 

Output: fruits mask (mask 2) 

Step 7 

Input: images acquired with the optical filters whose centre wavelength are 660 nm and 

880 nm (both with mask 1) 

 Masking of the image with the fruits mask (mask 2) 

Output: 660 nm and 880 nm images with background and fruits masked (mask 1 + 

mask 2) 

Step 8 

Input: image acquired with the optical filter whose centre wavelength is 880 nm, with 

background and fruits masked (mask 1 + mask 2) 

 K-means clustering 

Output: stems cluster – stems mask (mask 3) 

Step 9 

Input: image acquired with the optical filter whose centre wavelength is 660 nm, with 

background, fruits and stems masked (mask 1 + mask 2 + mask 3) 

 K-means clustering 

Output: 3 new clusters representing branches, leaves, and all previously masked pixels 

Step 10 

Input: clusters representing branches and leaves from step 9, stems mask from step 8 

(mask 3), fruits mask from step 6 (mask 2) and background mask from step 2 (mask 1) 

 Labelling of the pixels  

Output: pixels in the image classified into five clusters that are leaves, branches, stems, 

fruits and background. 

3. Results  

In order to validate the proposed approach, an extensive experimental campaign was carried out. 

The data acquisition was conducted in October of 2012, in the commercial vineyard Dinastía Vivancos 

(see Figure 4), located in Haro, Spain (lat. 42°33'34.22'' N; long. 2°51'40.17'' W). Cabernet Sauvignon 

grapevines of this vineyard were grafted on Richter 110 and planted in 1986. 

Figure 4. Cabernet Sauvignon vineyard. 
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The custom-made sensory rig that integrates a CCD camera and a servo-controlled filter wheel was 

installed in a pan-tilt unit and mounted in a tripod set, as shown in Figure 5. This set-up was always 

located normal to the vineyards’ canopy, at a distance of between 0.8 and 1.3 m and between  

0.4 and 0.6 m aboveground. A set of images, including RGB and monochrome images with band-pass 

filters that have centre wavelengths of 635 nm, 660 nm and 880 nm, were captured at a resolution of  

2,448 × 2,050, on both sides of the rows.  

Figure 5. (a) Sensor rig close-up; (b) Set-up for data acquisition. 

 

(a) (b) 

Figures 6–13 illustrate most of the intermediate results obtained from the different steps that make 

up the proposed algorithm. Figure 6(a) displays a scene acquired with the band-pass filter whose centre 

wavelength is 635 nm whereas Figure 6(b) shows the two clusters obtained from the K-means 

procedure, corresponding to the background and the foreground. In Figure 7 it is possible to appreciate 

the mask generated (mask 1) after the application of a morphological procedure to reduce small areas 

in the background and the RGB image with the background masked, respectively. 

Figure 8(a) presents the resulting clusters after applying the K-means to the ‘a*b*’ space of the 

Figure 7(b). From these clusters, only the fruits cluster, shown in Figure 8(b), is utilised as  

final solution (mask 2). Figure 9(a) displays the remaining pixels in the image of 880 nm after 

applying both the background and the fruits masks. Figure 9(b) shows the stems cluster resulting from 

the K-means executed on the Figure 9(a) and that will be utilised as an additional mask (mask 3) in the 

successive steps. 
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Figure 6. Step 1. (a) Image acquired with the optical filter whose centre wavelength is  

635 nm; (b) K-means result: 2 clusters representing the background and the foreground. 

 

(a) (b) 

Figure 7. Steps 2–3. (a) Background mask (mask 1) obtained after morphological 

procedure; (b) RGB image with background mask. 

 

(a) (b) 

Figure 8. Steps 5–6. (a) K-means clustering applied to the ‘a*b*’ space; (b) Fruits  

mask (mask 2). 

 

(a) (b) 
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Figure 9. Step 8. (a) 880 nm image with background and fruits masked; (b) Stems  

mask (mask 3). 

 

(a) (b) 

Figure 10. Step 9. (a) 660 nm image with background, fruits and stems masked; (b) Result 

of the K-means clustering. 

 

(a) (b) 

Figure 11. Step 10. (a) Original RGB image—scene 1; (b) Clustered image—scene 1. 

 

(a) (b) 
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Figure 12. (a) Original RGB image—scene 2; (b) Clustered image—scene 2; (c) Original 

RGB image—scene 3; (d) Clustered image—scene 3. 

 

(a) (b) 

 

(c) (d) 

Figure 13. (a) Original RGB image—scene 4; (b) Clustered image—scene 4; (c) Original 

RGB image—scene 5; (d) Clustered image—scene 5; (e) Original RGB image—scene 6; 

(f) Clustered image—scene 6. 

 

(a) (b) 
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Figure 13. Cont. 

 

(c) (d) 

 

(e) (f) 

Figure 10(a) displays the pixels that remain to be classified in the image acquired with the  

band-pass filter whose centre wavelength is 660 nm, after masking the background (mask 1), the fruits 

(mask 2) and the stems (mask 3). In Figure 10(b) it is possible to appreciate the three groups of  

pixels resulting from the K-means clustering. Green-coloured pixels belong to the leaves cluster, 

yellow-coloured pixels fits in the branches cluster and the rest, in white colour, are all the previously 

masked pixels. Finally, Figure 11(a) shows the original RGB image of the acquired scene, while the 

Figure 11(b) illustrates the classification result obtained with the proposed algorithm. Magenta, orange, 

green, yellow and white colours are utilised to visualise pixels classified as fruits, stems, leaves, 

branches and background, respectively. 

Figures 12 and 13 depict classification results for five additional scenes characterised for exhibiting 

different lighting conditions and varied levels of occlusion. In all the presented cases the proposed 

algorithm demonstrated a good performance. However, to evaluate quantitatively the performance of 

the proposed algorithm, the original RGB images from scenes 1 to 6 were manually segmented by 

selecting and labelling areas corresponding to fruits, leaves, stems, branches and background. For 

instance, Figure 14 shows the labelling images for the scenes 5 and 6, respectively. Then, these 

labelled images, considered as ground truth, were compared to pixel-level with the classified images 

obtained from the proposed algorithm, and the matching matrix was calculated for each pair of images. 
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With these matrixes, classification performance is assessed in terms of true-positive and false-positive 

detections for each class, precision for each class, total classification accuracy and total error rate [44]. 

Figure 14. (a) Labelling of the image corresponding to the scene 5; (b) Labelling of the 

image corresponding to the scene 6.  

 

(a) (b) 

The true positive rate, also called hit rate, recall and sensitivity, is a measure of the proportion of 

cases that were correctly identified, and it is defined by: 

         
                                                    

                                      
      (2) 

The false positive rate is the proportion of pixels that were incorrectly classified as belonging to the 

class i, and it is calculated as follows: 

         
                                       

                                                      
 (3) 

Precision is a measure of the accuracy provided that a specific class has been identified. It is  

defined by: 

           
   

   
    

      (4) 

where    
 and    

 are the numbers of true positive and false positive predictions for the considered 

class i. Accuracy is the overall correctness of the classification algorithm and is calculated as: 

         
                              

                               
      (5) 

Finally, the error rate is given by: 

           
                                

                               
      (6) 

Tables 2 and 3 summarise the true positive rates and the false positive rates for each class and for 

each scene. Higher true positive rates are attained for the Stems, Leaves and Background classes. 
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Fruits class has a satisfactory true positive rate, reinforced for the fact of presenting a quite reduced 

false positive rate. On the contrary, the Branches class has a low true positive rate, and a high false 

positive rate in comparison with the rest of the classes. For a better visualisation of the relative 

tradeoffs between benefits (true positives) and costs (false positives) of the proposed algorithm, a ROC 

(Receiver Operating Characteristics) graph [44] is shown in Figure 15. Each pair (               ) 

has associated a single point in the ROC space. Informally, one point in ROC space is better than 

another if it is to the northwest (        is higher,         is lower, or both) of the first [44]. 

Therefore, in Figure 15 it is possible to appreciate that most of the points are close to the perfect 

classification, represented by the point (0, 1). The Branches class is the only exception, with most of its 

points on the left-hand side of the ROC graph, but near the X axis. This performance could be 

understood as “conservative”: it makes positive classifications only with strong evidence so it makes 

few false positive errors, but it often has low true positive rates as well [44]. 

Table 2. True positive rates for each class and for each scene obtained with the  

proposed approach. 

Classes Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Fruits 76.5% 67.7% 77.1% 58.9% 61.1% 68.6% 

Stems 94% 88.8% 85.1% 84.3% 78.5% 66% 

Leaves 90% 83.7% 80.6% 68.7% 77% 92.1% 

Branches 28% 15% 34% 26.1% 39.8% 2.8% 

Background 91.2% 79.5% 48.6% 82.3% 66.2% 64.5% 

Table 3. False positive rates for each class and for each scene obtained with the  

proposed approach. 

Classes Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Fruits 0.6% 2.9% 0.6% 0.1% 0.2% 2.1% 

Stems 2.6% 4.4% 6.75% 1.6% 4.1% 5.1% 

Leaves 6.9% 10.5% 16.8% 8.5% 16.8% 26% 

Branches 4.7% 7.9% 15.1% 21.5% 15.4% 2.9% 

Background 1.5% 1.8% 1.8% 4.9% 3% 2.2% 

Table 4 gathers the precisions obtained for each class and for each scene, while Table 5 shows the 

accuracies and the error rates for each scene. From Table 4 it is possible to note again that higher 

precisions are attained for Background, Fruits and Leaves classes, whereas the lowest precision is 

obtained for the Branches class. Therefore, experimental results provide mean classification precisions 

of 89.7% for Fruits, 57.2% for Stems, 87.6% for Leaves, 5.4% for Branches and 89.2% for 

Background and a total mean accuracy of 75.8%. 
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Figure 15. ROC graph. 

 

Table 4. Precisions for each class and for each scene obtained with the proposed approach. 

Classes Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Fruits 95% 77.1% 93.4% 93.6% 98% 80.9% 

Stems 72.6 58.3% 42.5% 61.1% 57.2% 51.6% 

Leaves 93.8% 89.5% 80.9% 96.1% 86% 79.2% 

Branches 7.1% 4.5% 6.8% 1% 8.7% 4.5% 

Background 95.7% 94% 93.2% 78.4% 83.4% 90.6% 

Table 5. Accuracies and error rates for each scene obtained with the proposed approach. 

 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Accuracy 88.1% 79.2% 68.3% 70.9% 71.5% 76.5% 

Error rate 11.9% 20.8% 31.7% 29.1% 28.5% 23.5% 

Finally, some comparative results are presented in order to confirm that the utilisation of the 

combination of RGB and multispectral imagery (with properly selected band-pass filters), together 

with the proposed sequential masking algorithm based on the K-means method outperforms the results 

obtained from a simple colour based image classification using K-means clustering. For this, RGB 

images acquired for scenes 1 to 6 are transformed to the L*a*b* colour space, and the K-means 

method is applied to classify the colours in ‘a*b*’ space into five clusters, which should correspond to 

Stems, Branches, Leaves, Fruits and Background classes. Figure 16 depicts classification results for 

scenes 3 and 4, respectively. Magenta, orange, green, yellow and white colours are utilised to visualise 

pixels classified as Fruits, Stems, Leaves, Branches and Background, respectively. These results are 
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then compared to pixel-level with the ground truth labelled images, and the precision, as well as the 

total classification accuracy and the total error rate are calculated for each class and for each scene. 

These quantitative results are summarised in Tables 6 and 7, respectively. Therefore, mean 

classification precisions obtained are 72.5% for Fruits, 9.8% for Stems, 57.8% for Leaves, 2.9% for 

Branches and 66.6% for background, whereas the total mean accuracy achieved is 35.1%, what 

confirms an enhancement of the classification results with the proposed approach.  

Figure 16. (a) Clustered image—scene 3; (b) Clustered image—scene 4. 

 

Table 6. Precisions for each class and for each scene. 

Classes Scene 1 
Scene 

2 

Scene 

3 

Scene 

4 

Scene 

5 
Scene 6 

Fruits 89.3% 76.1% 
43.9

% 
54.7% 97.8% 72.9% 

Stems 12.1% 11.5% 2.4% 5.1% 18.6% 9.1% 

Leaves 77.9% 65.1% 5.0% 93.8% 84.7% 19.0% 

Branches 1.9% 1% 1.5% 1.2% 10.8% 1.21% 

Backgrou

nd 
79.1% 85.4% 

76.8

% 
56.8% 23.7% 78% 

Table 7. Accuracies and error rates for each scene. 

 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 

Accuracy 37.4% 28.4% 15.4% 52.1% 58.0% 19.3% 

Error rate 62.6% 71.6% 84.6% 47.8% 42.0% 80.7% 

4. Discussion 

Gathering together the quantitative results obtained from the experimental tests presented in the 

previous section, it is possible to highlight that the highest hit rates of classification were attained for 

the Stems, Leaves and Background classes with 82.8%, 82.0% and 72.0% respectively, while the 

Branches class exhibited the lowest performance with a hit rate value of 24.3% and a false positive rate 
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of 11.3%. Fruit class attained a satisfactory hit rate of 68.3%, reinforced for the fact of presenting the 

lowest false positive rate with a value of 1.1%. In addition, the mean classification precisions achieved 

from the experimental results were of 89.7% for Fruits, 57.2% for Stems, 87.6% for Leaves, 5.4% for 

Branches, and 89.2% for Background. All these results provide a total accuracy of 75.8%, what means 

that the proposed approach attains a high level of correctness in classifying the pixels of the images 

into the five different classes corresponding to Fruits, Leaves, Stems, Branches and Background.  

A more detailed observation of experimental results brings to light that common misclassification 

errors are produced by atypical leaves colourations, shadows, white bright pixels wrongly assigned to 

the Background class and the presence of fungicide (copper sulphate). The fact that the images were 

acquired at a distance of between 0.8 and 1.3 m may have contributed to the low performance achieved 

for the Branches class, especially if we take into account the small area that makes up the branches, 

their characteristic cylindrical shape, and that most of these branches are affected by either shadows or 

occlusions. Moreover, ground truth labelling of images is done manually, and this process is not 100% 

free from mistakes. As branches are represented in images by a reduced number of pixels in 

comparison with the rest of the grapevine elements, they are more susceptible to be affected by 

labelling errors, what could also have contributed to shorten the final performance achieved for the 

Branches class.  

Nevertheless, it is important to remark again that the proposed approach demonstrates a highly 

satisfactory performance for the classification of the grapevine elements in natural environments and 

without any previous preparation of the vineyard. Furthermore, the results from the utilisation of the 

combination of RGB and multispectral imagery (with properly selected band-pass filters), together 

with the proposed sequential masking algorithm based on the K-means methods surpass the results 

obtained from a simple colour based image classification using K-means clustering. More specifically, 

the proposed approach improves the mean classification precisions by 17.2 percentage points for 

Fruits, 47.7 percentage points for Stems, 29.8 percentage points for Leaves, 2.5 percentage points for 

Branches and 22.6 percentage points for Background, and the total mean accuracy in 2.2 times. 

Finally, it is also important to mention some considerations regarding the lighting. Experiments 

were carried out along several days, with different environmental conditions (sunny and cloudy), at 

different hours of the days, including morning, noon and afternoon, and in both sides of the vineyard’s 

rows. No artificial lights were utilised for illuminating the scenes during the images acquisition 

process. However, the orientation of the vineyard’s rows with respect to the sun, and the location of 

the sensor rig with respect to the grapevines, which was mainly constrained by the distance between 

the rows, produced a uniform lighting of the scenes. Therefore, more investigations should be 

conducted in order to study the performance of the proposed approach in more challenging 

environments, and the possibly improvement of its robustness. 

5. Conclusions and Future Work 

This paper demonstrates the feasibility of identifying Cabernet Sauvignon grapevine elements in 

unstructured natural environments working from a combination of RGB and multispectral imagery. 

The solution includes a custom-made sensor rig made up of a CCD camera and a servo-controlled 

filter wheel, and a sequential masking algorithm based on the K-means clustering. This algorithm 
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allows discriminating five different classes that are Leaves, Stems, Branches, Fruits and Background. 

Experimental results show mean classification precisions of 89.7% for Fruits, 57.2% for Stems, 87.6% 

for Leaves, 5.4% for Branches and 89.2% for Background and a total mean accuracy of 75.8%. 

Therefore, the proposed solution enables a fast data acquisition and provides an accurate enough 

discrimination of grapevine elements, without any pre-treatment of the images, and without any 

previous preparation of the vineyard, making it suitable for many applications, such as yield 

estimation, leaf area estimation, spraying and harvesting. 

Future work should be directed to enhance the classification performance for the Branches class. 

Among the steps to be investigated it could be a more extensive hyperspectral study in order to find a 

better combination of filters or the utilisation of an approach that combines object-based and  

pixel-based features. In addition, to gain understanding of what part of the algorithm is more 

responsible for the misclassification errors, another interesting research is to break-down the algorithm 

and to evaluate the performance on each step, in such a way the cause source that contributes to reduce 

the overall performance can be more easily determined. 
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