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Abstract—In the paper vertical movements of resonance 

hopping robot with one leg and electric drive are considered. 
Special construction of hopping robot with compensation of 
losses during flight of the robot allows to employ a relatively 
simple control system as well as to get a stable regime of its 
operation. The designed robot has self-properties to maintain a 
specified height of jumping even with simple control system. 
Results of dynamical calculations, simulations and experimental 
testing are presented.  
 

Index Terms—Robotics, resonance hopping robot, oscillations, 
stability of movement.  
 

I. INTRODUCTION 
Usually, hopping robots with electric motors have elastic 

devices that save part of energy in the moment, when the 
velocity of the robot is equal to zero; a motor compensates 
energy losses when robot’s leg and a bearing surface have a 
contact [1-4]. In the absence of the contact the drive motor 
cuts off. Under such control it is necessary to use a relatively 
powerful (and consequently, rather heavy) electromotor, 
which is capable to realize a compensation of losses during a 
very short time of the contact of robot’s leg with a bearing 
surface.  

Taking into account that the time of the contact is about ten 
times less than a complete cycle time, it seems to be 
advantageous to make a compensation of losses during robot’s 
flight time and not during the time of the contact of robot’s leg 
with a bearing surface [7, 8, 9]. Such approach allows to use a 
motor of a considerably lower power, that gives in significant 
decrease of robot’s weight and thus a consumption of energy 
is dimished. 

Another possibility related to decrease of energy 
consumption consists in minimizing of energy losses 
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(including losses derived from rubbing together of a leg and a 
body of the robot, losses inside resilient member etc.) during 
robot movement.  However, this method does not necessarily 
give satisfactory results. Thus, in the paper [5] it is shown that 
in some cases the capacity factor of energy of a compressed 
spring could constitute only 20 %. 

Additional problem, connected with a provision of a stable 
robot operation, is that hopping robot represents a highly 
nonlinear system (even using linear resilient members) 
characterized by existence of shocks. As a result, in such 
systems there can appear bifurcation effects and even strange 
attractors [6]. In this case a provision of a stable operation of 
the robot is usually reached at the expense of rather 
complicate control system. 

In the paper [8] it is shown that under certain conditions, 
hopping robot can maintain self-stabilization without any 
sensor. However, in this paper a simplified robot model is 
considered (a negligibly small mass of leg, ideal spring). In 
the present paper a special construction of hopping robot [9] is 
considered with compensation of losses during flight of the 
robot. This robot has been designed in Industrial Automation 
Institute (Madrid, Spain) and allows to employ a relatively 
simple control system as well as to get a stable regime of 
robot’s operation. In the present paper energy losses inside the 
spring and shock interactions of robot’s leg with its body and 
bearing surface are considered.  

 

II. CONCEPT OF ROBOT OPERATION 
A kinematic configuration of a robot under consideration is 

shown in Fig. 1. The robot has a body in which a leg with a 
mechanical stop block is anchored with a possibility of a 
forward movement. 

A spring is installed between the body and the leg of the 
robot. A motor-reducer is connected to a control system and is 
fixed on the body of the robot. On the output shaft of the 
motor-reducer a cylinder is fixed, which is connected to the 
leg of the robot through a flexible rope. A control system can 
contain different sensors, but in the elementary version it is 
enough to use only two sensors: angle sensor of rotational 
displacement of a motor and a sensor of a contact of the leg 
and the bearing surface. 

The operation of the robot is carried out in a cyclic way 
without stoppage in an extreme lower position. Let us denote a 
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number of a cycle by i . Let us assume also that in initial 
position robot is at a maximum height above the bearing 
surface. Its gravity center has a height iH  counted from a 
position of the robot that corresponds to the moment of a 
contact of the leg with the bearing surface. 

During robot’s flight the drive motor turns through some 
angle a cylinder that is joint with the robot. The turn begins 
from the moment of the robot’s leg separation from the 
bearing surface. This leads to a reeling of a rope on the 
cylinder and, as a consequence, to a partial tightening of a 
spring. When the before given strain deformation l is reached, 
the drive motor stops to rotate the cylinder and holds it in this 
position. The process of a tightening of the spring should be 
terminated not later than the leg of the robot makes a contact 
with the bearing surface. After a signal is obtained from a 
sensor of contact of the robot’s leg and the bearing surface, the 
drive motor turns the cylinder in the opposite direction the 
same angle. Thus, the rope ceases to interact with the robot’s 
leg. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1.  Kinematic configuration of a hopping robot with a compression 
spring.  

 
At the moment of a contact of robot’s leg and bearing 

surface the leg stops, and the robot’s body, having certain 
velocity, continues moving downwards and deforms the spring 
additionally. The body of the robot after a stopping in the 
lowermost position starts to move up under a compressed 
spring action. This process lasts up to the moment when the 
stop block of a leg impacts the body of the robot. Furthermore, 
the free flight of the whole robot continues until it reaches 
maximum height Hi+1. Then the whole process repeats. The 
obvious condition of a stable operation of the robot is: 

 

ii HH =+1                                                                     (1) 
 
For fulfillment of this condition, an amount of energy, equal 

to energy losses during a motion cycle, is to be transferred to a 
spring by the drive motor. 

 

III. MATHEMATICAL DESCRIPTION 
When equations that described robot’s movement during the 

cycle number i  were set up, the following assumptions were 
used: 

- the bearing surface was considered absolutely solid, 
- the leg impact upon the bearing surface was considered as 

instantaneous and absolutely inelastic, 
- the impact of a leg stop block upon robot’s body was 

considered as instantaneous and absolutely inelastic, 
- a resilient element was considered as linear; however, for 

calculating of power loss during relative movement of the leg 
and the body of the robot and during the corresponding 
deformation of the resilient element, it was accepted, that at 
loading of the resilient element it was characterized by a 
spring constant 1c  and at unloading - by spring constant 2c , 

and that 21 cc > , 
- it was supposed, that the spring was strainless in a 

position, when the stop block of the leg was in contact with 
the body of the robot (leg of the robot is extended as much as 
possible), 

- m  was defined as a sum of a mass of robot’s leg and a 
half of a mass of resilient element, 

- M  was defined as a sum of a mass of the body of the 
robot, a mass of all elements rigidly connected with the robot 
and a half of a mass of resilient element. 

On the base of a mechanical energy conservation law we 
have [for the robot movement from initial position (Fig. 2a) 
into a position immediately before the impact of the leg of the 
robot against bearing surface (Fig. 2b)]: 

 

ii gHV 21 =                                                                (2) 

 
where iV1  is a velocity of the robot before robot’s leg 

impact against bearing surface, g  is gravitational 
acceleration. 

On Fig. 2b, 2c the process is represented of the impact of 
the robot’ leg against bearing surface (2b – a position 
immediately before the impact, 2c – a position immediately 
after the impact). 

Taking into consideration that the impact is instantaneous 
and absolutely inelastic, it is evident that a velocity and a 
position of the body of the robot during the impact do not 
vary, and the velocity of the leg ends up as null. Let us notice, 
that during this process the system loses energy, which can be 
calculated by the formula: 

 

2

2
1

1
i

i
mVW =                                                                  (3) 

 
On Fig. 2c, 2d a movement of the body of the robot is shown 
from the moment of the contact of the leg with the bearing 
surface up to the moment of full stop of the robot’s body. 
From a mechanical energy conservation law we have: 

leg 

spring 

body of robot 

rope 

cylinder 

motor 

mechanical stop block
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Fig. 2.  Movement’s cycle of hopping robot. 
 

2
)(

2

2
1

2
1

2
1 lSclcMVMgS ii

i
+

=
+

+                           (4) 

 
where iS  is a magnitude of displacement of the body of the 

robot before full stop. 
On Fig. 2d, 2e a process of displacement of the robot is 

shown from the lowermost position up to the moment, when 
the stop block of the leg is found in immediate proximity with 
the body of the robot (a position immediately before the 
impact). On the base of a mechanical energy conservation law, 
for this displacement we have: 
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where iV2  is a velocity of the robot’s body immediately 

before the impact of the leg stop block against the body of the 
robot. 

On Fig. 2e, 2f the process of impact is shown of a stop 
block of a leg against the robot’s body (2e – a position 
immediately before impact, 2f – a position immediately after 
impact). Considering that the impact is instantaneous and 
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absolutely inelastic, to calculate a velocity of the robot after 
the shock it is necessary to use a law of conservation of 
momentum of the body: 
 

 

ii VmMMV 32 )( +=                                                    (6) 
 
Let us notice that during this process and because of 

inelasticity of the shock, the system loses the amount of 
energy, which can be calculated by the formula: 

 

2
)( 2

3
2

2
2

ii
i

VmMMVW +−
=                                         (7) 

 
On Fig. 2f, 2g the last stage of a movement cycle of the 

robot is shown (2f – a position of the robot immediately after 
an impact of the leg stop block against the body of the robot, 
2g – a position, when the robot has lifted on the maximum 
height). For this movement, on the base of the mechanical 
energy conservation law, we have: 

 

1

2
3

2 +=+ i
i gHgl

V
                                                        (8) 

 
Let us mark, that during a whole cycle, the energy is lost in 

the resilient element: 
 

2
))(( 2

21
3

lSccW i
i

+−
=                                              (9) 

 
Thus, the total energy whole cycle losses, which should be 

compensated at steady-stated movement of the robot with the 
help of the motor, can be calculated by the formula: 

 

iiii WWWW 321 ++=                                                  (10) 
 
Provided the fulfillment of the condition (1), the set of 

equations (2, 4, 5, 6, 8) allows to find parameters of steady-
stated driving of the robot. So, having set a required height of 
the flight of the robot, it is possible to find the magnitude of a 
displacement, on which the motor should move robot’s leg 
during the flight time of the robot. 

From the set of equations (2, 4, 5, 6, 8) it follows that for 
each steady-stated height H of robot’s jump there exists the 
unique magnitude of spring displacement l , which provides 
the given height of jump. However, not for any magnitude of 
l  it is possible to have a situation when robot makes jumps 
with a release from a surface. For the movements with a 
release from a surface a condition *ll > has to be fulfilled, 

where *l  is calculated from the equations (2, 4, 5, 6, 8) on the 
base of obvious condition 01 == +ii HH . 

The same set of equations allows to describe the process of 

damped oscillations of the robot with disconnected motor. For 
this purpose it is enough to set an initial height of lift of the 
robot and to assume that 0=l . Robot’s jumping (with a leg 
separated from a surface) ends at the cycle number n, on 
which, instead of the equation (5), the inequality: 

 
MgSc n 22 <                                                                  (11) 

 
will be fulfilled for the first time. 
 

IV. STABILITY OF MOTION 
From a system of the recurrence equations (2, 4, 5, 6, 8) it 

follows, that the process of steady-stated movement of the 
robot is stable in relation to both low and high level of 
disturbances provided that on each cycle the drive motor 
transmits to the system the same amount of energy (i.e. 
extends a spring the same magnitude l ). So, at random 
disturbance, which diminishes a height of jump of the robot, 
the losses are diminished also during the movement, according 
to the equations (3, 7, 9, 10), that gives in restoring of 
stationary height of jumps of the robot. Similarly, at random 
disturbance, which augments a height of jump of the robot, the 
losses also increase during the movement that gives in 
stabilization of a steady-stated movement (shown in Fig.3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Values of height of jumps vs. number of jumps (simulation). Jumps 
number 1-9 correspond to a steady-state movement. Significant disturbance 
with positive energy acted at the moment of jump number 10, significant 
disturbance with negative energy acted at the moment of jump number 50. 
Movement is self-stabilized because thesystem is working with 50% of 
reserve of stability. 

 
It is necessary to notice, that the above mentioned is valid 

only in the case, when it is precisely known, that the 
magnitude of energy, provided by the motor, remains constant 
and does not depend on random disturbances. It is also very 
essential, how the process of displacement of a spring is 
carried out during the flight of the robot. It has been 
mentioned earlier, that this process should start at the moment, 
when the stage of the flight starts and should end before the 

iH
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leg’s impact against surface, i.e. the process takes a quite 
determinate time CT , which should not be greater than the 
flight time calculated by the formula: 

 

g
H

g
lHTF

2)(2
+

−
=                                        (12) 

 
However, if the process of displacement of the spring is 

finished accurately at the moment of the end of the stage of 
flight ( FC TT = ), the process of movement can be both 
unstable and stable.  

The matter is that at random disturbance that diminishes a 
height of flight, the time (during which the motor transmits 
energy to the spring) is diminished also. Apparently, this time 
is not enough for the motor to be able to move the spring the 
required magnitude. As a result, the height (as well as the 
time) of the following jump will decrease. Furthermore, the 
process repeats. 

To generate a certain reserve of stability of movement it is 
necessary to conclude a process of spring displacement a little 
earlier than the process of flight is finished. However, 
provided that the transmission is not self-braking or the motor 
is not supplied with the special brake, the motor consumes 
additional energy to hold the spring extended, so that too big 
stability reserve leads to non-rational energy expenses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Values of height of jumps vs. number of jumps (simulation). Jumps 
number 1-9 correspond to a steady-state movement. Disturbance with positive 
energy acted at the moment of jump number 10, disturbance with negative 
energy acted at the moment of jump number 50. The system is working 
without a reserve of stability, but with a feedback according to the formula 13 
with a parameter N>1. The movement is unstable. 

 
It is possible to provide a stabilization of robot’s movement 

even under a condition FC TT = . In this case a feedback can 
be introduced in relation to the time of robot’s flight.  Thus, 
for example, supposing that the magnitude of displacement of 
spring caused by motor is not constant and depends on the 
magnitude of time of preceding cycle 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Values of height of jumps vs. number of jumps (simulation). Jumps 
number 1-9 correspond to a steady-state movement. Disturbance with positive 
energy acted at the moment of jump number 10, disturbance with negative 
energy acted at the moment of jump number 50. The system is working 
without a reserve of stability, but with a feedback according to the formula 13 
with a parameter 0<N<1. The movement is stable. 
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we have that the movement becomes stable even in relation 

to significant disturbances under a fulfillment of a condition  
10 << N  (Fig. 5). At 1>N  a movement is unstable (Fig. 

4) in relation to disturbances that decrease the height of 
robot’s jump; however, a movement is stable in relation to 
disturbances that increase the height of robot’s jump. For 
realization of the condition (13) it is necessary to establish a 
corresponding law of control of the motor, which performs a 
displacement of the spring.  

 

V. EXPERIMENT 
For experimental testing of obtained results a laboratory 

prototype of a hopping robot was designed, manufactured and 
tested according to the scheme presented on Fig. 1. The 
prototype is designed to jump up to 0.4 m, has a weight 3,5 kg 
and the weight of its leg is 0,15 kg. First experiments have 
shown, that without upload of energy from the motor, about 
50 % of energy accumulated in the spring is lost during the 
first cycle.  

These losses vary considerably from cycle to cycle. It is so, 
basically, because, as the examination of this effect has 
shown, in the robot a compression spring is used, which loses 
its stability and contacts with guide rail in deformed state. It 
gives in appearance of frictional force between the spring and 
the guide. Besides, the internal losses of energy are big 
enough during the process of loading - unloading of the 
spring. 

To decrease power losses during robot’s movement, the 
design of the robot was then slightly changed (Fig. 6). Instead 
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of one compression spring of squeezing, four extension 
springs were used (keeping the same total rigidity 900 n/m 
with a smaller diameter of a spring wire). This allowed to save 
up to 75 percents of energy accumulated in a spring and, 
principally, eliminated completely the instability of power loss 
quantity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Kinematic configuration of the hopping robot with extension spring.  
 
During experiments the condition FC TT <  was always 

satisfied. The experiments have shown, that in spite of a 
simplicity of the control system, the robot holds stable height 
of jumps with deviations from the given value not exceeding 
0,3 %. It is also shown experimentally, that at presence of 
disturbing effects the robot changes height of jump, but 
returns to a specified height of jumps after several cycles (Fig. 
7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Experimental values of height of jumps vs. time. Disturbance with 
positive energy acted at the moment t=0, disturbance with negative energy 
acted at the moment t=6 s. Blue circles: real height of jumps; red line: given 
height of jumps. Similar results were obtained by means of calculations using 
equations (2, 4, 5, 6, 8). 

 
Let us notice that during experiments two variants of 

starting of robot work were considered. In the first case, the 
robot was lifted on a height H , corresponded to a given 
regime of work, then the spring was contracted on the 
corresponding magnitude l  and then the robot was released. 
In the second case, the robot was not lifted, the spring was 
contracted on the magnitude somewhat exceeding a magnitude 

Sl + , then the drive was reversed with the maximal possible 
velocity. 

For additional decrease of energy consumption, a special 
dual drive with changeable transmission ratio has been 
designed, which allowed a decrease of energy expenses at the 
cost of the increase of motor efficiency. 

 

VI. CONCLUSION 
A hopping resonance robot has been studied with a 

compensation of energy losses during robot’s flight. On the 
base of dynamic calculations, new dynamic effects are 
revealed that are connected with the movement stability of the 
hopping robot. It was shown that, on the one hand, the 
considered robot makes it possible to use a low-power motor; 
on the other hand, under certain conditions, such robot 
possesses self-properties providing a natural stabilization of 
the given regime of work. It is shown that if the conditions of 
natural stabilization do not fulfill, the proposed control 
algorithm allows a stabilization of the motion even at the 
presence of significant disturbances. The results obtained are 
confirmed by calculations and experimentally. 

It is planned to make a quadruped running resonance robot, 
with each leg designed on the base of the principles described 
in the present paper. 
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