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Abstract: The motivation of this research was to explore the feasibility of detecting and 

locating fruits from different kinds of crops in natural scenarios. To this end, a unique, 

modular and easily adaptable multisensory system and a set of associated pre-processing 

algorithms are proposed. The offered multisensory rig combines a high resolution colour 

camera and a multispectral system for the detection of fruits, as well as for the discrimination 

of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast 

acquisition of distances enabling the localisation of the targets in the coordinate space. A 

controlled lighting system completes the set-up, increasing its flexibility for being used in 

different working conditions. The pre-processing algorithms designed for the proposed 

multisensory system include a pixel-based classification algorithm that labels areas of 

interest that belong to fruits and a registration algorithm that combines the results of the 

aforementioned classification algorithm with the data provided by the TOF camera for the 

3D reconstruction of the desired regions. Several experimental tests have been carried out in 

outdoors conditions in order to validate the capabilities of the proposed system. 

Keywords: precision agriculture; fruit detection; multisensory system; time-of-flight 

camera; multispectral system; optical filters 
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1. Introduction 

Service robots are becoming a key part of many sectors of the society, including precision agriculture, 

where they are called to play an important role in improving competitiveness and sustainable  

production [1]. Precision agriculture oriented to the automatic harvesting of fruits requires the 

investigation of non-destructive sensors capable of collecting precise and unambiguous information for 

an efficient detection and localization of fruits. This task of detection and localisation in natural scenes 

is quite challenging, since most fruits are partially occluded by leaves, branches or overlapped with other 

fruits [2]. These occlusions eliminate the direct correspondence between visible areas of fruits and the 

fruits themselves by introducing ambiguity in the interpretation of the shape of the occluded fruit [3]. In 

addition, colours of fruits cannot be rigidly defined because the high variability exhibited among the 

different cultivars within a same species and the different levels of ripeness. Moreover, fruits can be 

found in quite random positions and orientations in trees of various sizes, volumes and limb structures. 

Environmental conditions such as wind, rain, dust, moisture and lighting also increase the technical 

challenge imposed to the sensory system [4]. 

Given the strong dependence of the fruit harvesting robots on sensorial information, and the numerous 

problems to be solved in this area due to the application requirements, there has been an intensive 

research effort during the last four decades, aiming to provide automatic detection and localisation of 

fruits. Most of the related studies reported in the literature are based on the use of computer vision and 

other image processing techniques. One of the first studies was presented by [5], who identified from 

their measurements that the surface of oranges reflected ten times more light than the leaves. In [6] the 

first computer vision system for detecting apples and guiding a harvesting robot was implemented. The 

proposed system was based on a monochrome camera and a red optical filter to increase the contrast 

between red apples and green-coloured leaves. In [7] a vision system based on a single colour camera 

was proposed for the tomato harvesting Agrobot robotic system. Hue and saturation histograms were 

employed to perform thresholding to segment the image whereas the 3D information was obtained by 

stereo-matching of two different images of the same scene. Two approaches based on colour information 

to solve the fruit recognition problem for a citrus picking robot were presented in [8,9]. A system based 

on a monochrome camera to detect and located tomatoes in natural settings was also developed in [10]. 

Each acquired image was processed in order to find circular arcs that could correspond to tomato 

contours. The automatic detection of apples by using a stereo vision system which provided the  

3D-dimensional position of each detected fruit was addressed in [11]. A sensory system based on an 

infrared laser range-finder sensor that provided range and reflectance images, capable of detecting 

spherical fruits in non-structured environments was designed and implemented in [12]. Some 

comprehensive reviews like [4,13] cover several aspects of these and other not-mentioned-systems. 

More recently, Van Henten, et al. [14] achieved a high detection rate of cucumber fruits by combining 

the images acquired by two cameras, one equipped with an 850 nm filter and the other with a filter in 

the 970 nm band. Bulanon, et al. [15] used a real time machine vision system based on a colour CCD 

camera to determine the location of the apples centres and the abscission layer of the peduncles. In a 

later approach, Bulanon and Kataoka [16] extended their earlier study by combining the machine vision 

system based on a colour CCD camera with a laser ranging sensor to determine the distance to the fruit. 

Tanigaki, et al. [17] designed and manufactured a 3D vision system that has two laser diodes for a  
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cherry-harvesting robot. One of these laser diodes emits a red beam and the other an infrared beam. The 

3D shape of the cherries was measured by scanning the laser beams, and the red fruits were distinguished 

from other objects by the difference in the spectral-reflection characteristics between the red and infrared 

laser beams. A multispectral analysis was also carried out in [18] to enhance citrus fruit detection in the 

field. In [19,20] authors proposed a machine vision unit that consists of three aligned CCD cameras for 

guiding a strawberry-harvesting robot. In this case, the two side cameras were used to provide stereo 

vision to determine the fruit position in the 3D space, while a camera located in the centre was used to 

detect the peduncle and to calculate its inclination.  

All the studies mentioned above are limited to fruit detection. Nevertheless, for the harvesting task, 

it would be advantageous to detect and localise other plant elements that could interference in the free 

motion of the robotic manipulator. In [21] Cabernet Sauvignon grapevine elements are discriminated for 

precision viticulture tasks such as harvesting, whereas in [22] the problem of plant parts detection is 

addressed for the motion planning of a sweet-pepper harvesting robot. Also worthy of mention are the 

researches carried out by [23,24]. Although the sensory systems proposed in these studies have not been 

designed for harvesting robots, they addressed the detection and localization of plant elements for other 

precision agriculture tasks as selective spraying and yield estimation. 

This paper presents the research carried out in order to assess the feasibility of detecting, 

discriminating and locating fruits and other plant elements from different kinds of crops in natural 

environments by utilising a unique modular and easily adaptable multisensory system and a set of 

associated pre-processing algorithms. The proposed solution is intended to be used in autonomous 

harvesting robotic systems, without requiring previous preparation of the crops. 

2. Materials and Methods  

This section describes the automatic multisensory rig that has been designed for the data acquisition 

and explains the pre-processing algorithms that has been implemented for the proposed multisensory 

system. A validation strategy is also presented for evaluating qualitatively the system performance. 

2.1. Multisensory System Description  

All harvesting robots require a sensory system that provides reliable data that can be processed and 

analysed in order to detect the presence of fruits, discriminate them from the rest of the scene elements 

and locate them spatially. In addition to complying with these fundamental objectives necessary for the 

efficient performance of the harvesting robot, the sensory system proposed in this study also intends to 

offer modularity, versatility and adaptability, so that the same rig can be utilised in various settings and 

with different types of crops without requiring major modifications. 

The proposed multisensory system consists of an AVT Prosilica GC2450 high resolution CCD colour 

camera, a multispectral imaging system and a Mesa SwissRanger SR-400011 TOF 3D camera [25]. The 

5-megapixel GC2450 has a frame rate of up to 15 fps at 2448 × 2050 pixels resolution. Meanwhile, the 

TOF camera provides a depth map and amplitude image at the resolution of 176 × 144 pixels with 16 bit 

floating-point precision, as well as x, y and z coordinates to each pixel in the depth map. The detection 

range (radial distances) of this device goes from 0.1 m to 5.0 m, and its field of view is 69° (h) × 56° (v). 

The high resolution colour camera is not only utilised for the acquisition of RGB images, but also as part 
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of the multispectral system, in which case it is set in the monochrome mode. The multispectral system 

is completed with a custom-made filter wheel and a servomotor that is responsible for the accurate 

positioning of the filter wheel. This positioning can be achieved with a maximum angular velocity of  

40 rpm and a position error if 0.001°. The filter wheel allows interchanging up to five optical filters, 

facilitating the adaptation of the system for the detection of different kinds of crops. Since correct 

illumination could be critical in some scenarios, the system also includes two different light sources, an 

array of xenon lamps and two halogen spots, located above and at both sides of the sensory system, 

respectively. This lighting system is connected to a control unit that enables the independent power on 

and off of the lamps, and the control of their intensities. Some views of the proposed system are shown 

in Figure 1.  

Figure 1. Close-up views of the multisensory system for fruit harvesting robots. 

 

The RGB camera and multispectral imaging system will provide the input data required for the  

detection and characterisation of areas of interest that could belong to fruits, whereas the TOF 3D camera 

will supply simultaneously fast acquisition of accurate distances and intensity images of targets, enabling 

the localisation of fruits in the coordinate space. Intrinsic and extrinsic calibration parameters of both 

cameras were estimated by using the Matlab camera calibration toolbox (http://www.vision.caltech.edu/ 

bouguetj/calib_doc/). A distance measurement calibration was also carried out in Matlab 

(http://www.mathworks.com/products/matlab/) for the TOF camera by following the method proposed 

in [26]. 

In order to confer versatility to the set-up, the whole proposed multisensory system is installed on a 

pan-tilt unit that facilitates the data acquisition of different viewpoints. The tilt movement has a limited 

angular displacement of α = ±30° relative to the horizontal axis due to mechanical constraints. The yaw 

movement has no mechanical constraint, so it could rotate 360° around the vertical axis. However, for 
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the stated application, the automatic yaw movement will be restricted for azimuthal angles within the 

range given by 0° ≤ β ≤ 180°.  

The control architecture for the proposed multisensory system consists of two main parts, a unit 

implemented in Robot Operating System (ROS, http://www.ros.org/), responsible for managing the 

sensing devices and the high level control of the hardware elements, and a second unit implemented in 

QNX RTOS (http://www.qnx.com) for the low level control of the hardware elements, which are the 

motorised filter wheel, the illumination system and the pan-tilt unit (see Figure 2). Thus, the principal 

functions of the first unit are the initialisation of the CCD and TOF cameras (acquisition mode, pixel 

format), the setting of the camera parameters according to the working conditions (exposure time in the 

CCD camera and integration time in the TOF camera) and the control of the image acquisition procedure. 

Three ROS nodes are developed for achieving these functionalities: one for each camera and the sensory 

system controller node. Synchronous acquisition of the CDD and TOF camera is achieved when the 

sensory system controller publishes a trigger message that is sent when the filter wheel reaches a 

requested position. Immediately after the frame data acquisition is successfully completed, the sensory 

system controller node sends a command to the second unit implemented in QNX in order to initiate the 

motion of the filter wheel to the next target position. This node also sends commands for controlling the 

lights and the pan-tilt unit when required [27]. 

Figure 2. Multisensory system architecture. 

 

The second unit is in charge of the low level control for the high accurate positioning of the filter 

wheel (with a position error of ±0.01285° and a maximum time delay of 50 ms for the positioning of 

each filter), switch on, switch off and intensity variation of the illumination system, as well as the high 

accurate positioning of the pan-tilt unit, being the PID controller the preferred option for this purpose. 

First and second unit communicate between them via TCP messages. These messages contain the 
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parameters and commands required for controlling and monitoring the motion and the data acquisition 

tasks of the multisensory system.  

2.2. Pre-Processing Algorithms  

Before investigating methodologies and techniques that permit us to detect and locate fruits with high 

accuracy, it is necessary to count with appropriate pre-processing algorithms that allow us to take full 

advantage of the data acquired with the designed multisensory system. Taking into consideration the 

configuration described in the previous subsection, two complementary pre-processing algorithms are 

proposed: a pixel-based classification algorithm that labels areas of interest that are candidates for 

belonging to fruits and a registration algorithm that combines the results of the aforementioned 

classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the 

desired regions. These algorithms are described below.  

Several studies have demonstrated that different targets with a similar appearance when they are 

captured by an RGB camera can exhibit distinctive properties if they are examined with spectral systems 

capable of acquiring several separated wavelengths [28]. For this reason, the first algorithm deals with 

the combination of RGB and filtered images acquired with the proposed multisensory system in order 

to achieve a classification system capable of distinguishing the different elements of the scene [21]. The 

algorithm, based on Support Vector Machines (SVMs), is capable of labelling each pixel of the image 

into four classes that are: stems and branches, fruits, leaves, and background. SVM is a supervised 

learning method utilized for classifying set of samples into two disjoint classes, which are separated by 

a hyperplane defined on the basis of the information contained in a training set [29]. In the case at hand, 

four SVMs are utilized sequentially, each one for detecting a class against the rest. Therefore, after the 

first SVM is applied, pixels identified as belonging to fruit class are labelled and a mask is generated in 

such a way that only the remaining pixels are considered for the following SVMs. This step is then 

repeated for the rest of the classes in the following order: leaves, stems and branches, and finally 

background. The SVM classifiers are trained by selecting a random subset of samples from the RGB 

and filtered images and manually labelling the regions of interest from these images into the four 

semantic classes mentioned above. The algorithm was implemented in C++ with the aid of the Open 

Source Computer Vision Library (OpenCV) [30,31]. 

Once regions of interest have been detected in the scene, it is necessary to locate them spatially. The 

TOF camera included in the proposed multisensory system provides amplitude, depth and confidence 

data simultaneously for each pixel of the image captured. The amplitude represents the greyscale 

information, the depth is the distance value calculated within the camera and the confidence is the 

strength of the reflected signal, which means the quality of the depth measurements. Although TOF data 

is fundamental for localisation purposes, it is still necessary to automatically match this information with 

the classification map obtained from the previous step in a common reference frame. For accomplishing 

this procedure it should be taken into account that TOF images and resulting classification maps come 

from sensors that exhibit different field of view and different pixel array size. Thus, data will only depict 

the same content partially, and the pixel correspondence will not be direct. To overcome this problem, 

the random sample consensus (RANSAC) algorithm is adopted for the multisensory registration. 

RANSAC is one of the most robust algorithms for model fitting to data containing a significant 
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percentage of errors [32]. This iterative method estimates parameters of a mathematical model from a 

set of observed data which contains outliers [33]. As the multisensory system has been designed in an 

enclosure that prevents the relative movements between the different elements that compose it, the idea 

is to use the RANSAC method to find the rotation and translation (R, T) that enable the transformation 

of the TOF data into the reference frame of the classification map. For that, N pairs of control point 

matches between Frames ܨଵ and ܨଶ are selected, where ܨଵ and ܨଶ correspond to TOF and RGB frames 

respectively. Note that the RGB frame is utilised for convenience, as it is consistent with that of the 
classification map. The control points are represented by 2D coordinates ൫ ଵܺ௜ , ܺଶ௜൯ in their respective 

reference systems. RANSAC samples the solution space of (R, T) and estimates its fitness by counting 

the number of inliers, ଴݂: 

଴݂ሺܨଵ, ,ଶܨ ܴ, ܶሻ =෍ܮ൫ ଵܺ௜ , ܺଶ௜ , ܴ, ܶ൯ே
௜   

where: ܮ൫ ଵܺ௜ , ܺଶ௜ , ܴ, ܶ൯ = ൜1, ݁ = ฮܴ ଵܺ௜ ൅ ܶ െ ܺଶ௜ฮ ൏ ߳0, otherwise  

and ߳ is the threshold beneath which a features match ൫ ଵܺ௜ , ܺଶ௜൯ is determined to be an inlier. RANSAC 

chooses the transform with the largest number of inlier matches [34]. In this way, the transformation 

given by (R, T) may be applied to any image acquired with the TOF camera, obtaining quickly and 

efficiently the registered data and it won’t be necessary to recalculate this transformation as long as the 

multisensory rig is not modified. The algorithm for on-line registration of the TOF data with the 

classification map was implemented in C++. Figure 3 summarises the inputs and outputs of the proposed 

pre-processing algorithms. 

Figure 3. Inputs and outputs of the proposed pre-processing algorithms. 

 



Sensors 2014, 14 23892 

 

 

2.3. Validation Strategy 

The objective of the validation strategy is to establish a structured procedure that provides quantitative 

information for evaluating the system performance. As it was stated before, harvesting robots require 

sensory systems that allow reliable detection and localisation of fruits. Thus, the quality of the proposed 

multisensory system and the associated set of pre-processing algorithms will be rated by comparing the 

obtained detection and localisation results with ground truth data that will serve as reference. The 

performance metrics selected for validation purposes are: 

• The true positive fruit detection rate, which is a measure of the proportion of the pixels that are 

correctly identified as belonging to the class fruits. It is defined by: 

TP	 = number of pixels of the class fruits correctly classified

total number of pixels of the class fruits
∙ 100% 

• The false positive fruit detection rate, which is the proportion of pixels that are incorrectly 

classified as belonging to the class fruits. It is calculated as follows: 

FP = number of pixels incorrectly classified

total number of pixels of other classes different to fruits
∙ 100%  

• The precision of fruit detection, which is a measure of the accuracy. It is defined by: 

Precision = TP

TP+FP
∙ 100%  

• The fruit detection error rate, which is given by: 

Error rate = sum of incorrect classifications

total number of classifications
∙ 100% 

• The mean absolute error [|ex|, |ey|, |ez|] in fruit localisation, which is the average of the absolute 

differences between the true coordinates of a selected point on the target fruit and the coordinates 

provided by the TOF camera, both relative to the TOF camera optical centre. The point selected 

on the fruit for the calculation of the mean absolute error is the centre of the visible outer surface 

of the fruit.  

All these metrics include a clear statement of the end results expected. On the other hand, for the 

calculation of these performance indicators, two ground truth datasets are required. The first one should 

contain a list of detectable fruits, as well as their corresponding spatial localisations estimated on the 

centre of their visible outer surfaces. This first dataset is generated manually by one person. Thus, 

immediately after the data acquisition and processing of a scene, a human observer, situated in front of 

the crop, enumerates the visible fruits of the scene and measures their positions in the TOF camera 

reference frame. In this way, ground truth data generation is conducted under the same practical 

conditions that the data acquisition and processing. This first ground truth dataset is utilised for 

estimation of the mean absolute errors in order to evaluate the location capabilities of the proposed 

system. The second dataset includes a pixel-based masked image for each scene. The masking is 

performed manually on each RGB image by marking only those pixels that belong to fruits. Thus, second 

dataset is generated from the images acquired and processed during the experimental tests, and is used 
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for the calculation of the rest of performance indicators with the aim of validating the detection 

capabilities of the proposed system. 

3. Experimental Section 

In order to evaluate the feasibility of the multisensory system and the associated set of pre-processing 

algorithms for detecting and locating fruits from different kinds of crops in natural scenarios, an 

extensive experimental campaign has been conducted in field conditions, in an apple orchard and a 

vineyard located in Chillan, Chile.  

The first phase of the experimental campaign was devoted to the acquisition of training data for the 

design of the pixel-based classification algorithm. In this case the acquired dataset included RGB and 

monochrome images with band-pass filters that have centre wavelengths of 635 nm and 880 nm [21]. 

Since the aforementioned algorithm deals with the classification of each image pixel, each testing set 

consists of 5,018,400 samples (2448 × 2050 pixels on the image). In order to train the SVMs of the 

proposed classification algorithm, four acquired datasets were randomly selected. From these RGB and 

filtered images, representative regions of interest of different sizes were selected for each desired class. 

Then, the mean reflectance values of these regions were treated as training samples and were manually 

labelled in four semantic classes: fruits (apples or grapes), stems, leaves and background. With the 

obtained set of 40 samples per class, the SVMs of the proposed pre-processing algorithm were trained 

to classify the pixels of the images. The sampling approach for training data could be then considered as 

a stratified random sampling method, since the population is divided into smaller groups known as strata, 

which are formed based on members’ shared features [35]. Random samples from each stratum are taken, 

and these subsets are then combined to form the random training sample. 

For the second phase of the experimental campaign, aimed at evaluating the proposed system, the 

acquired dataset included not only RGB and monochrome filtered images, but also range data. Outputs 

provided by the proposed system consist of a pixel-based classification map and the TOF (depth and 

amplitude) registered data. Figures 4 and 5 show the RGB and the filtered images acquired with the 

multisensory system, as well as the resulting classification map for an apple crop scene.  

Figure 4. Apple orchard – Filtered images. (a) 635 nm image; (b) 880 nm image. 

 
(a) (b) 
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Figure 5. Apple orchard. (a) RGB image; (b) Classification map. 

(a) (b) 

In the classification map, red, brown, green and white colours are utilised to visualize pixels classified 

as apples, stems and branches, leaves, and background, respectively. Figure 6b illustrates the blobs 

extracted from the classification map that satisfied the predefined requisites to be a fruit candidate for 

harvesting in contrast with the original RGB image displayed in Figure 6a. For each blob the centroid 

and the area are calculated. 

Figure 6. Apple orchard. (a) RGB image; (b) Centroid and area calculation for each blob 

that satisfies the predefined requisites to be a fruit candidate for harvesting. 

 
(a) (b) 

In the same manner, Figures 7 and 8 show the RGB and the filtered images acquired with the 

multisensory system, as well as the resulting classification map for a vineyard scene. In this classification 

map, magenta, brown, green and white colours are utilised to visualize pixels classified as grapes, stems 

and branches, leaves, and background, respectively. Figure 9 displays the detected blobs that satisfied 

the predefined requisites to be a fruit candidate for harvesting.  
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Figure 7. Vineyard – Filtered images. (a) 635 nm image; (b) 880 nm image. 

 
(a) (b) 

Figure 8. Vineyard. (a) RGB image; (b) Classification map. 

 
(a) (b) 

Figure 9. Vineyard. (a) RGB image; (b) Centroid and area calculation for each blob that 

satisfies the predefined requisites to be a fruit candidate for harvesting. 

 
(a) (b) 
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Once the classification map is obtained, TOF data is registered in order to locate spatially the regions 

of interest that belong to fruits. Figures 10 and 11 show the original data acquired with the TOF camera 

for the same scenes presented previously in Figures 4–6 and 7–9, respectively. The acquired data 

includes the amplitude (Figures 10a and 11a), the confidence map (Figures 10b and 11b) and the range 

data in meters (Figures 10c and 11c). Figures 12 and 13 display the resulting multispectral maps, 

amplitude and range data obtained after applying the registration algorithm. Finally, Figure 14 shows 

the close-up view of a registered region of interest extracted from the last presented scene. 

Figure 10. Data acquired with the TOF camera – Apple crop. (a) TOF amplitude data;  

(b) TOF camera confidence map; (c) Z-axis range data acquired with the TOF camera. 

(a) (b) (c) 

Figure 11. Data acquired with the TOF camera – Vineyard. (a) TOF amplitude data;  

(b) TOF camera confidence map; (c) Z-axis range data acquired with the TOF camera. 

(a) (b) (c) 

Figure 12. Registered data – Apple crop. (a) Registered multispectral map; (b) TOF 

registered amplitude data; (c) TOF registered Z-axis range data. 

(a) (b) (c) 
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Figure 13. Registered data – Vineyard. (a) Registered multispectral map; (b) TOF registered 

amplitude data; (c) TOF registered Z-axis range data. 

(a) (b) (c) 

Figure 14. Close-up view of a registered region of interest. (a) TOF registered Z-axis range 

data; (b) Registered multispectral map; (c) RGB-D visualisation of the registered region  

of interest. 

(a) (b) (c) 

4. Results and Discussion 

For validation purposes, a total of 12 scenes from the apple crop and 10 from the vineyard were 

acquired, processed and evaluated. Ground truth data was carefully collected and produced for each 

scene in order to carry out a quantitative assessment of the proposed solution. This process involved as 

first step the manual labelling of some fruits of the scenes acquired and processed during the 

experimental campaign, as well as the manual measurement of the distance from the frontal plane of the 

TOF camera to the centre of the visible outer surface of each labelled fruit. Horizontal and vertical 

distances from a defined reference frame to the centre of the visible outer surface of each labelled fruit 

were also measured manually. For instance, Figure 15 shows the labelling of one of the scenes acquired 

in the apple orchard, while Figure 16 displays the same for the vineyard. Note that these images have 

been acquired with an external camera, different from the RGB camera included in the multisensory rig, 

only for illustration purposes, and consequently, as can be observed, the point of view is different if they 

are compared with Figures 5a and 8a. Tables 1 and 2 summarise the ground truth measurements collected 
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for these scenes, where X and Y correspond to the horizontal and vertical distances measured from the 

origin of the reference frame defined on the image to the centre of the visible outer surface of each 

labelled fruit, and Z represents the orthogonal distance measured from the frontal plane of the TOF 

camera to the centre of the visible outer surface of each labelled fruit. The reference frame defined on 

each image for the ground truth data collection is the centre of the fruit labelled as 1. Thus a 

transformation of these measurements is required in order to compare them to the data provided by the 

TOF camera. This transformation only affects to the x and y coordinates, since z coordinate is always 

referenced to the TOF camera. 

Figure 15. Ground truth data acquisition for a scene of the apple orchard. 

 

Figure 16. Ground truth data acquisition for a scene of the vineyard. 

 

Table 1. Ground truth measurements for the scene presented in Figure 15. 

REFERENCE FRAME – CENTRE OF THE FRUIT 1 

FRUIT X [mm] Y [mm] Z [mm] 

1 0 0 1040 
2 −125 80 1077 
3 345 −40 1053 
4 −140 −175 1071 
5 340 −130 983 
6 290 −70 1026 
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Table 2. Ground truth measurements for the scene presented in Figure 16. 

REFERENCE FRAME – CENTRE OF THE FRUIT 1 

FRUIT X [mm] Y [mm] Z [mm] 

1 0 0 598 
2 9 −3 585 
3 −25 4 682 
4 36 12 589 
5 15 −2 603 
6 42 −4 571 

After evaluating the data registered from the TOF camera with the collected ground truth, we obtained 

that the position error ranges from 0 to 4.5 cm in the x-axis, from 0 to 6.1 cm in the y-axis and from 1 to 

7.6 cm in the z-axis, with a mean error of 0.8 cm in the x-axis, 1.5 cm in the y-axis and 2.3 cm in the  

z-axis. Table 3 summarises these results. In natural scenes it is quite easy to find a great number of 

elements that can affect the response of the TOF camera, which is characterised by suffering from flying 

pixels, noise and incorrect depth measurements due to the scene geometry and material properties. For 

instance, the modulated light used by the TOF camera is frequently reflected by multiple surfaces inside 

the scene before reaching the camera sensor. Border of fruits and leaves produces commonly this kind 

of multi-path interferences, affecting the range data measurements. Plants elements can also be moved 

by the wind during the acquisition process, producing erroneous measurements. It has to be considered 

also that the registration algorithm is dealing with a correspondence between images of 144 × 176 from 

the TOF camera and images of 2050 × 2480 from the classification maps. Moreover, manual 

measurement of distances for ground truth data is not exempt from errors, which could explain the 

appearance of some isolated maximum errors, far from the mean values. Therefore, the mean position 

errors obtained during the experimental test are quite acceptable bearing in mind the high complexity of 

the studied scenes and the large difference in the resolution of the TOF images and the classification maps.  

Table 3. Position errors from the TOF registered data. 

Axis Minimum Error [cm] Maximum Error [cm] Mean Absolute Error [cm] 

X 0 4.5 0.8 
Y 0 6.1 1.5 
Z 1 7.6 2.3 

The second step implied the pixel-based masking for each fruit of the acquired scenes. This masking 

was performed manually on five RGB images of the apple orchard and five RGB images of the vineyard 

by marking only those pixels that belong to the fruits. Figures 17 and 18 show, respectively, the mask 

images for the apple orchard and vineyard scenes presented before (Figures 5a and 8a). These images 

are then utilised as ground truth data in the pixel-level comparison carried out with the classification 

maps obtained from the proposed pre-processing algorithm. Classification performance is then evaluated 

in terms of true-positive (TP) and false-positive (FP) detections for fruits, precision and total error rate, 

following the validation strategy described in Subsection 2.3. Results of this evaluation are gathered in 

Tables 4 and 5. It is important to mention that these results were obtained without carrying out any 

morphological operation on the classification maps. 
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Figure 17. Pixel-based masking for apples. 

 

Figure 18. Pixel-based masking for grapes bunches. 

 

Table 4. Performance evaluation for apples orchard scenes. 

Scene TP [%] FP [%] Precision [%] Error Rate [%] 

1 97.0 0.17 99.8 0.16 
2 91.9 0.39 99.6 0.37 
3 98.1 0.09 99.9 0.08 
4 97.8 0.20 99.8 0.19 
5 98.3 0.11 99.9 0.10 

Mean values 96.6 0.19 99.8 0.18 
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Table 5. Performance evaluation for vineyard scenes. 

Scene TP [%] FP [%] Precision [%] Error Rate [%] 

1 89.9 1.28 98.6 1.13 
2 82.1 1.59 98.1 1.46 
3 79.6 1.65 98.0 1.52 
4 80.6 2.82 96.6 2.47 
5 83.2 2.70 96.9 2.33 

Mean values 83.1 2.01 97.6 1.78 

Classification of grapes exhibits a slightly lower performance than classification of apples. This may 

be due to the fact that bunches of grapes present a complex characteristic shape that makes them  

more prone to shadows and specular reflexions, and consequently more prone to suffering from 

misclassifications. Ground truth labelling is also more complex for grapes than for apples, which may 

also contribute to degrade overall performance results. 

Nevertheless, high true positive rates are achieved for both grapes and apples detection, reinforced 

by the low false positive rates. Mean classification precisions were of 99.8% for apples and 97.6% for 

grapes, whereas mean error rates were of 0.18% and 1.78% for apples and grapes, respectively. 

Therefore, the proposed pre-processing algorithm attains a high level of correctness in classifying the 

pixels of images that belong to the target fruits.  

5. Conclusions 

This paper proposes a modular and easily adaptable multisensory system and a set of associated  

pre-processing algorithms for the detection and localisation of fruits from different kinds of crops. The 

solution includes a colour camera and a multispectral system for acquiring reflectance measurements in 

the visible and NIR regions that are used for finding areas of interest that belong to the fruits, and a TOF 

camera that provides fast acquisition of distances enabling the localisation of the targets in the  

coordinate space.  

The pre-processing algorithms designed for the proposed multisensory system include a classification 

algorithm based on SVMs that identifies pixels that belong to fruits and a registration algorithm that 

combines the results of the aforementioned classification algorithm with the data provided by the TOF 

camera in order to obtain a direct correspondence among their pixels, so range data can be associated to 

pixels labelled as fruit. An extensive experimental campaign was carried out in order to assess the 

proposed solution, including the acquisition of not only test data but also training and ground truth data.  

In spite of the challenging scenarios found in natural environments, the proposed solution exhibited 

a satisfactory performance. Multisensory system provides all the data required for detecting and locating 

fruits, showing a great versatility in dealing with different crops. The pre-processing algorithm based on 

SVM classifiers affords an accurate enough discrimination of apple tree and vineyard elements, without 

any pre-treatment of the images, and without any preparation of the crops. Finally, registration algorithm 

allows the spatial localisation of the regions of interest classified as fruits with enough accuracy. 
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