

Copyright © 2016 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering & Management, 1:4 (2016), 46
ISSN: 2468-4376

http://www.lectitojournals.com

Applying Absolute Residuals as Evaluation Criterion for Estimating the
Development Time of Software Projects by Means of a Neuro-Fuzzy
Approach

Noel García-Díaz1,2*, Alberto Verduzo-Ramirez 1,2, Juan Garcia-Virgen 1,2, Lilia Muñoz3

1Instituto Tecnológico de Colima, MÉXICO
2Universidad de Colima, MÉXICO
3Universidad Tecnológica de Panamá, REPUBLICA DE PANAMÁ
*Corresponding Author: ngarcia@itcolima.edu.mx

doi: http://dx.doi.org/10.20897/lectito.201646

Received: July 14, 2016; Accepted: September 24, 2016; Published: November 4, 2016

ABSTRACT

In the software development field, software practitioners expend between 30% and 40% more effort than is
predicted. Accordingly, researchers have proposed new models for estimating the development effort such that
the estimations of these models are close to actual ones. In this study, an application based on a new neuro-
fuzzy system (NFS) is analyzed. The NFS accuracy was compared to that of a statistical multiple linear
regression (MLR) model. The criterion for evaluating the accuracy of estimation models has mainly been the
Magnitude of Relative Error (MRE), however, it was recently found that MRE is asymmetric, and the use of
Absolute Residuals (AR) has been proposed, therefore, in this study, the accuracy results of the NFS and MLR
were based on AR. After a statistical paired t-test was performed, results showed that accuracy of the New-
NFS is statistically better than that of the MLR at the 99% confidence level. It can be concluded that a new-
NFS could be used for predicting the effort of software development projects when they have been individually
developed on a disciplined process.

Keywords: Artificial neural networks, fuzzy logic, neuro-fuzzy system, Software effort estimation, absolute
residuals

INTRODUCTION

A high percentage of machine learning models have been proposed based on an accuracy asymmetric criterion
Magnitude of Relative Error (MRE) (Wen et al., 2012), however, it was recently found that MRE is asymmetric
and that the use of the Absolute Residual (AR) should be used instead because of AR is unbiased and it is does no
lead to asymmetry (Shepperd & MacDonell, 2012). The AR criterion has been already used in recent publications
for estimating the effort (López-Martín, 2015) and schedule (duration, time) (Ferreira-Santiago et al., 2015) of
software projects.

Software Engineering (SE) is the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software and it provides the fundamentals, principles and skills
needed to develop and maintain high quality software products (Abran et al., 2004). Some of the areas of SE are:
Requirement, design, construction, testing, and management. Software Engineering Management includes
planning and measurement of SE, which involves to the Software Development Effort Estimation (SDEE).

Citation: García-Díaz, N., Verduzo-Ramirez, A., Garcia-Virgen, J. and Muñoz, L. (2016) Applying
Absolute Residuals as Evaluation Criterion for Estimating the Development Time of Software
Projects by Means of a Neuro-Fuzzy Approach, Journal of Information Systems Engineering & Management,
1:4 (2016), 46.

http://dx.doi.org/10.20897/lectito.201646

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

© 2016 by author/s 2

The Chaos report conducted by the Standish Group (The Standish group, 2012), which is the report on the
failure of projects in the field of information technologies, measures the success of projects only if completed in
time, within budget, and if they met the requirements. Several research works in software development effort
estimation have cited the Chaos report (De Araújo et al., 2012; Bonneti et al., 2012; De Araújo et al., 2012b;
LagerstrÖm et al., 2012; Moløkken-Østvold & Jørgensen, 2003). This report found that more than half of software
projects worldwide (around 61%) conducted between 2004 and 2012 were delivered with delay, were over budget
and many were not even finished; just 39 percent were classified as successful. The main cause of these problems
is a failure of the SDEE (De Araújo et al., 2009, 2011). Estimation of software development effort is the basis for
project bidding, budgeting and planning. The consequences of poor budgets and plans can be dramatic: if they are
too pessimistic, business opportunities can be lost, while over optimism may be followed by significant losses.

The SDEE activity could start using a personal level approach, starting with the development of small-size
projects. The disciplined software development at the personal level based on small-scale projects, represented by
the personal software process (PSP), have offered benefit for thousands of developers in academic or industrial
training courses (Rombach et al., 2008).

Two of the three most important causes of Information Technology projects failure have been related to a
poor resource estimation (González-Carrasco et al., 2012). In average, software developers expend from 30% to
40% more effort than is estimated (Jørgensen & Shepperd, 2007). Because that no single technique to estimate
software development effort is best for all situations, it is important to propose new models to compare their
results and then generate more realistic estimates (Boehm & Abts, 2000).

The objective of this paper is to present a new Neuro-Fuzzy System (NFS) for achieving higher accuracy for
estimating the development time of software projects using the AR and its mean (MAR).

The data set obtained from (Lopez-Martin et al., 2005) with forty-one modules developed in ten projects were
used for training and testing the models. The accuracy of the new NFS was compared to that of a Multiple Linear
Regression (MLR) model.

The rest of this study is structured as follows: Section 2 presents the related work. Section 3 defines SDEE and
the AR is described. In Section 4 is described the software estimation technique where SDEE has been addressed.
A brief description to MLR, Fuzzy Logic (FL), Neural Networks (NN) and NFS is presented in their respective
sections. Section 5 is dedicated to the description of the data set from which the models are generated; then is
carried out the generating of the MLR model and the New-NFS, whereas in Section 6 the results are presented
and compared. Finally, conclusions and future work are mentioned in Section 7.

RELATED WORK

A systematic review of 157 studies published between the years 2002 and 2012 involved the application of NFS
(Kar et al., 2014). This review classifies the NFS applications into ten different categories, and in none of them
was found any study regarding SDEE, therefore, in this study a NFS is proposed as a new model to compare its
results to a MLR.

Additional estimation techniques have been proposed into the area of SDEE to improve estimation accuracy
(Wen et al., 2012; Jørgensen & Shepperd, 2007).

A systematic review of 84 studies analyzed machine learning models specifically applied to SDEE (Wen et al.,
2012). This review involved empirical studies published in the last two decades (1991–2010). After analyzing these
studies, by Wen et al., found eight types of machine learning techniques applied to SDEE; however, it was not
found any paper using data from small projects and basing its conclusions on AR and having a NFS using a Grid
partitioning method to obtain the parameters for input and output of the membership functions (MF).

A second systematic review completed in 2004 identified 304 SDEE studies in 76 journals (Jørgensen &
Shepperd, 2007). It classified the studies according to their research topic, estimation approach, research approach,
study context and data set. In this review, it was not including any neuro-fuzzy model used for SDEE.

A NFS to estimate software projects development time was built by (Marza et al., 2008). The forty-one modules
developed from ten software projects were used as data set. The proposed approach was compared with FL and
NN model and results showed that the value of MMRE applying NFS was substantially lower than MMRE
applying FL and NN.

In (Garcia-Diaz et al., 2015) the accuracy of time estimation for a NFS was statistically better than the accuracy
obtained from a previous NFS and statistical regression when the forty-one modules developed from ten programs
were used as data set. Results showed that the value of MMRE (Mean of Magnitude of Relative Error) applying a
New-NFS was substantially lower than MMRE applying a previous NFS and statistical regression.

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

3

© 2016 by author/s

In (Lopez-Martin et al., 2005) was proposed a FL model for SDEE whose results are compared with those of
a multiple regression. Results showed that the value of MMRE applying FL was slightly higher than MMRE
applying multiple regression.

SOFTWARE ENGINEERING MANAGEMENT

A. Software development effort estimation (SDEE)
The SDEE has been defined, at least since 1969 as the amount of time in human hours needed to design, code,

and test a software project (Naur & Randell, 1969).
The SDEE process consists of specific activities:
1. Obtaining data from previous projects.
2. Generation of estimation models.
3. Checking and validating the models, based on accuracy.
One activity of software project planning is the estimation of the development effort, which was considered to

be one of the three great challenges of computer science (Brooks, 2003) and effort estimation techniques have
been proposed and researched over the last years (Wen et al., 2012; Jørgensen & Shepperd, 2007). Researchers
aimed at (1) determining which technique had the greatest effort estimation accuracy, or (2) proposing new or
combined techniques that could provide better estimates.

SDEE techniques can be classified into two general categories (López-Martín, 2015):
1) Expert judgment: This technique implies a lack of analytical argumentation and aims at deriving estimates

based on the experience of experts on similar projects; this technique is based on a tacit (intuitive) quantification
step.

2) Model-based technique: It is based on a deliberate (mechanical) quantification step, and it can be divided
into the following two subcategories:

a) Models based on statistics: Its general form is a statistical regression model.
b) Models based on machine learning such as FL, NN, genetic programming, and genetic algorithm.
The present work uses estimations obtained with an algorithmic model and it attempts to represent the

relationship between effort and one or more characteristics of a project, based on statistics (MLR) and a NFS,
which is a hybrid model based on a computational technique. MLR has been the dominating technique for software
estimation in recent years (Jørgensen & Shepperd, 2007).

B. Evaluation criterion
For evaluating the different software effort estimation machine learning models is used the Magnitude of

Relative Error (MRE) which is the most popular accuracy metric when compared effort estimation models (Wen
et al., 2012), however MRE is an accuracy criterion known to lead to asymmetry (Shepperd & MacDonell, 2012),
therefore, in this research the absolute residuals is used as suggested in (Shepperd & MacDonell, 2012).

The AR is defined as follows:

iii ffortEstimatedErtActualEffoAR  (1)

The AR value is calculated for each observation i whose effort is estimated. The aggregation of ARs over
multiple observations (N) can be achieved through its mean (MAR) as follows:

 𝑴𝑨𝑹 = (
𝟏

𝑵
) ∑ 𝑨𝑹𝒊

𝑵

𝟏

The accuracy of an estimation technique is inversely proportional to the MAR (Shepperd & MacDonell, 2012).
That is, a lower MAR indicates a more accurate estimate.

SOFTWARE ESTIMATION TECHNIQUE

A. Multiple linear regression (MLR)
Accuracy of statistical regressions has frequently been used to be compared to other software estimation models

(Wen et al., 2012; Jørgensen & Shepperd, 2007). The comparison against a statistical regression model is suggested
because it should be built as the default model construction method (Kitchenham et al., 2007).

B. Fuzzy logic (FL)
FL was introduced by Zadeh in 1965. FL is the definition given to a mathematical system developed to model

the brain of human curious way of processing and selecting words (Zadeh, 1965). The main motivation behind the
creation of FL was the existence of imprecision in the measurement process.

FL represents models or knowledge using IF–THEN rules in the form of ‘‘if X then Y’’.

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

© 2016 by author/s 4

A fuzzy model is a modelling construct featuring two main properties (Zhiwei-Xu & Khoshgoftaar, 2004): (1)
It operates at a level of linguistic terms (fuzzy sets that are sets whose elements have degrees of membership), and
(2) it represents and processes uncertainty.

FL offers a particularly convenient way to generate a keen mapping between input and output spaces thanks to
the natural expression of fuzzy rules (Zadeh, 2002).

In SDEE, two considerations justify the decision of implementing a fuzzy model: first, it is impossible to
develop a precise mathematical model of the domain (Lewis, 2001); second, metrics only produce estimations of
the real complexity.

There are two types of fuzzy inference system (FIS), these are: Mamdani (Mamdani, 1976) and Takagi-Sugeno
(Takagi & Sugeno, 1983). The FIS that was used in this study is the proposed by Takagi-Sugeno (Takagi & Sugeno,
1983) once we did not find any study that used for the SDEE of small projects. The Mamdani (Mamdani, 1976)
FIS expects the output MF to be fuzzy sets, whereas the Takagi-Sugeno-type system can be used to model any
inference system in which the output is either linear or constant. In this research was used the constant output.

The rules in functional Takagi-Sugeno fuzzy systems have the form:

Ri: IF x1is A1
j
 and…and xnis An

j
THEN y is fj(𝑥)

Where fj(𝑥) is a crisp function of the input variables, rather than a fuzzy proposition (Takagi & Sugeno, 1985).

For a particular application, the effectiveness of the fuzzy system in most cases depends on the order of the
function.

C. Neural networks (NN)
A NN, is a massively parallel, distributed system composed of simple processing units or artificial neurons that

are interconnected to mimic a biological NN (Haykin, 1999).
Before a NN can be used, it has to undergo some training, which involves iteratively finding the appropriate

weight values so that the network outputs the desired value for a given a set of input values. A number of training
algorithms have been developed over the years, with Backpropagation being the most widely known (Haykin,
1999). After a NN has been trained, it is convenient to validate its performance using ideally a dataset different
from the one used to train it.

In this research was used a combination of training algorithms between Backpropagation and least mean
squares.

NN are used in SDEE due to its ability to learn from previous data. In addition, it has the ability to generalize
from the training data set thus enabling it to produce acceptable result for previously unseen data (Su et al., 2007).

NN can model complex non-linear relationships and approximate any measurable function such that it is very
useful in problems where there is a complex relationship between inputs and outputs (Aggarwal et al., 2005; Huang
et al., 2007).

D. Hybrid systems
One of the most important capabilities of FL is to model the qualitative aspects of human by using the simple

rules. The NN have some advantages such as its capability of learning and high computational power. As a result,
it is possible to combine the advantages of NN and FL to make a better tool.

NFS is a fuzzy system augmented by NN to enhance some characteristics like flexibility and adaptability (Nauck,
1994; Nauck et al., 1997; Saliu, 2003).

The NN research started in the 1940s, and the FL research in the 1960s, but the neuro-fuzzy research area is
relatively new (Jantzen, 1998).

The neuro-fuzzy hybrid systems may be divided into two major groups (Mitra & Hayashi, 2000): FNN and
NFS. FNN is a NN equipped with the capability of handling fuzzy information. NFS is a fuzzy system combined
with NN in order to enhance certain desirable characteristics (Nauck, 1994; Nauck et al., 1997; Saliu, 2003). This
research is based on the second approach.

A NFS can be viewed as a special three layer NN (Nauck et al., 1997). The first layer represents input variables;
the hidden layer represents fuzzy rules and the third layer represents output variables.

The first integrated hybrid NFS is ANFIS; it has lowest Root Mean Square Error (RMSE) among other NFS
like the ARX model. Therefore, ANFIS was used here for implement Takagi-Sugeno NFS. By MATLAB, the
ANFIS structure with (a) type: Sugeno FIS, (b) and method: prod, (c) or method: probor, (d) implication Method:
min, (e) aggregation Method: max and (f) defuzzfication: Wtaver (weighted average) was implemented and its
architecture is shown in Fig. 1 (Abraham, 2005).

The functioning of each layer is as follows (Abraham, 2005):

Layer-1 (input layer): No computation is done in this layer. Each node in this layer, which corresponds to one
input variable, only transmits input values to the next layer directly. The link weight in layer 1 is unity.

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

5

© 2016 by author/s

Layer-2 (fuzzification layer): Each node in this layer corresponds to one linguistic label to one of the input
variables in layer 1. In other words, the output link represents the membership value, which specifies the degree
to which an input value belongs to a fuzzy set, is calculated in layer 2. A clustering algorithm will decide the initial
number and type of MF to be allocated to each of the input variable. The final shapes of the MFs will be fine-
tuned during network learning.

Layer-3 (rule antecedent layer): A node in this layer represents the antecedent part of a rule. Usually a T-norm
operator is used in this node. The output of a layer 3 node represents the firing strength of the corresponding
fuzzy rule.

Layer-4 (rule strength normalization): Every node in this layer calculates the ratio of the firing strength of the
i-th rule to the sum of all rules firing strength.

𝑤̅𝑖 =
𝑤𝑖

𝑤1+ 𝑤2
, i=1, 2… (3)

Layer-5 (rule consequent layer): Every node i in this layer is with a node function.

𝑤̅𝑖𝑓𝑖 = 𝑤𝑖̅̅ ̅ (𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖) (4)

Where 𝑤̅𝑖 is the output of layer 4, and {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} is the parameters set. A well-established way is to determine
the consequent parameters using the least means squares algorithm.

Layer-6 (rule inference layer): The single node in this layer computes the overall output as the summation of all
incoming signals.

Figure 1. Neuro-fuzzy system.

GENERATION OF MODELS

A. Data sample description

 The comparative study carried out here was based on the empirical study done by (Lopez-Martin et al., 2005;
Marza et al., 2008; Garcia-Diaz et al., 2015). The development time of forty-one modules and for each module,
coupling (Dhama), complexity (McCabe), and lines of code metrics were registered, all programs were written in
Pascal, hence, module categories belong to procedures or functions.

The development time of each of the forty-one modules were registered including five phases: requirements
understanding, algorithm design, coding, compiling and testing (Lopez-Martin et al., 2005).

The statistics and a brief description related to each module are described by (Lopez-Martin et al., 2005).

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

© 2016 by author/s 6

B. Multiple linear regression

Using the data described in (Lopez-Martin et al., 2005; Marza et al., 2008; Garcia-Diaz et al., 2015) the MLR
equation considering the New & Changed (N&C) lines of code was obtained:

Time = 17.31 + (2.06*MC) – (32.94*DC) - (0.05*LOC) (5)

The equation 5 describes the relationship between the dependent variable (Time) and the independent variables
(McCabe complexity, Dhama coupling as well as lines of code).

An acceptable value for the coefficient of determination is r2 ≥ 0.5 (Humphrey, 1995). In this case, the r2 of
equation 5 was 0.7223. The ANOVA for this equation had a statistically significant relationship between the
variables at the 95% confidence level.

C. Neuro-fuzzy system (NFS)

In according to (Lopez-Martin et al., 2008) a Gaussian MF have two parameters, one of them (k) determines the
curve shape and the other one (m) corresponds to curve central position. Their scalar parameters (k, m) are defined
as follows:

MF(x) = 𝑒−𝑘(𝑥−𝑚)2
 (6)

Table 1 shows the final parameters of the MF of input variable. The NFS parameters are obtained by the Grid
Partitioning method. Grid partition divides the data space into rectangular subspaces using axis-paralleled partition
based on predefined number of MF and their types in each dimension (Wei et al., 2007). According to (Wei et al.,
2007) grid partition is only suitable for cases with small number of input variables (e.g. less than 6).

In Fig. 2a to 2c are shown the three input variables with its respective small, medium, big and very big MFs and
its parameters with each one of the MFs from table 1.

Table 1. Parameters of mf of input variables

Input Variable Range MF Parameters

McCabe

1-5

Small 0.5662 1

Medium 0.5658 2.33

Big 0.5665 3.66

Very_Big 0.5663 5

DC

0.077-0.333

Small 0.0344 0.0794

Medium 0.0144 0.135

Big 0.0483 0.2255

Very_Big 0.0547 0.3191

LOC

4-31

Small 3.822 4

Medium 3.822 13

Big 3.821 22

Very_Big 3.822 31

Figure 2. Input variables of Takagi-Sugeno New-NFS.

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

7

© 2016 by author/s

RESULTS

Mean Magnitude of Relative Error (MMRE) assesses the validation results of estimation accuracy of the 41
projects in a previous work (Garcia-Diaz et al., 2015) whose results are shown in Table 2.

Table 2. MRE of Each Technique (MLR: Multiple Linear Regression, NFS: Neuro-Fuzzy System, MMRE: Mean
of Magnitude of Error Relative).

 MLR New-NFS

MMRE 0.1005 0.0163

Table 3. MAR of each module (MLR: Multiple Linear Regression, NFS: Neuro-Fuzzy System, MAR: Mean of
Absolute Residuals).

Module Actual Time AR - MLR AR -New-NFS

1 13 2.06 0.0003

2 13 2.36 0.0000

3 9 0.80 0.0001

4 15 3.20 0.0001

5 15 1.63 0.0000

6 15 1.87 0.4999

7 16 0.87 0.5001

8 16 0.62 0.0001

9 16 0.42 0.0073

10 18 2.47 0.0129

11 15 0.43 1.0068

12 15 0.43 1.0068

13 18 2.57 1.9932

14 13 1.35 0.9952

15 14 0.35 0.0048

16 15 0.65 1.0048

17 13 1.10 0.0009

18 12 0.70 0.0003

19 12 0.70 0.0003

20 22 2.09 0.0079

21 19 0.17 0.0058

22 18 0.63 0.5227

23 19 0.37 0.4773

24 21 2.86 0.1219

25 20 1.91 0.3850

26 21 2.91 0.6150

27 19 0.96 0.5191

28 20 1.96 0.4809

29 15 2.35 0.0506

30 13 4.30 0.0898

31 19 2.99 0.0018

32 13 1.81 0.0006

33 12 2.66 0.0010

34 12 2.41 0.0003

35 21 1.22 0.0115

36 21 0.48 0.0001

37 19 2.10 0.0117

38 18 0.23 0.0000

39 24 2.19 0.4999

40 25 3.19 0.5001

41 18 1.94 0.0001

 MLR New-NFS

MAR 1.6173 0.2765

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

© 2016 by author/s 8

Mean ARs assesses the validation results of estimation accuracy of the 41 projects in this study, whose results
are shown in the Table 3.

A statistical test for comparing the two sets of MARs by model should be selected taking into account the
assumptions of dependence and normality of data (Ross, 2004).

In this work, each of the two sets of ARs by model, ARMLRi and ARNew-NFSi, is obtained from the
corresponding project i; therefore ARMLRi,…, ARMLRn, and ARNew-NFSi,…, ARNew-NFSn, are dependent
(also termed related or paired) samples. The above means that a procedure to test the differences between the two
sets ARMLRi and ARNew-NFSi should be selected for determining whether the mean of the set of 41 differences
is equal or not to zero with a difference statistically significant. Figure 3 shows a normal probability plot for the set
of 41 differences for ARs.

Figure 3. Normal probability plot.

The normality statistical tests of Chi-Squared, Shapiro-Wilk, Skewness, and Kurtosis were applied to the data
from Figure 3, had p-values equal to 0.567, 0.290, 0.580 and 0.444, respectively. Since the smallest amongst the test
is greater than 0.01, we cannot reject the idea that the data presented in Figure 3 comes from a normal distribution,
with 99% of confidence.

Because the two sets of ARs by model are dependent and the set of their differences is normally distributed, the
suitable statistical test for comparing their estimation accuracy is the paired t-test (Ross, 2004), which tests the null
hypothesis that the mean ARMLRi – ARNew-NFSi equals 0.0, versus the alternative hypothesis that the mean
ARMLRi – ARNew-NFSi is not equal to 0.0. After applying the paired t-test, the resulting p-value was equal to
3.26E-9, meaning that since the p-value for this test is less than 0.05, we can reject the null hypothesis at the 99.0%
confidence level.

CONCLUSIONS AND FUTURE RESEARCH

This paper presented a research aimed at comparing the New-NFS and the MLR model to estimate software
projects development time using as accuracy criteria ARs and a paired t-test.

The paper proposes a new approach NFS with four MFs for estimating of software projects development time.
The major difference between our work and previous works is that New- NFS used ARs and a paired t-test as
evaluation criteria.

The new-NFS with four MF presented the best (lowest) MMRE value in a previous work, as well as the lowest
(best) MAR value in present study showing better results than the MLR model for both research works.

In order to achieve more accurate estimation, others MFs should also be used such as triangular, trapezoidal
and Gaussian using the Takagi-Sugeno model with a linear output and with different numbers of MF. Also, another
training algorithm as is Backpropagation could be used in order to obtain the parameters of the MF.

ACKNOWLEDGMENTS

Authors of this paper would like to thank Instituto Tecnológico de Colima, Universidad de Colima, Consejo
Nacional de Ciencia y Tecnología (CONACYT), as well as Programa para el Desarrollo Profesional Docente

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

9

© 2016 by author/s

(PRODEP). In addition, we would like to express our gratitude to Ing. Saturnino Castro Reyes, Director of Instituto
Tecnológico de Colima, for his valuable support obtained.

REFERENCES

J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, “Systematic literature review of machine learning based software
development effort estimation models,” Information and Software Technology, 54 (2012) 41–59.

M. Shepperd, S. MacDonell, “Evaluating prediction systems in software project estimation”, Information and
Software Technology, Volume 54, pp. 820–827, 2012. doi:10.1016/j.infsof.2011.12.008

C. López-Martín Predictive accuracy comparison between neural networks and statistical regression for
development effort of software projects Appl. Soft Comput., 27 (2015), pp. 434–
449. http://dx.doi.org/10.1016/j.asoc.2014.10.033

A. Ferreira-Santiago, López-Martín, C., & Yáñez-Márquez, C. (2015). Metaheuristic optimization of multivariate
adaptive regression splines for predicting the schedule of software projects. Neural Computing and
Applications, 1-12.

A. Abran, J. W. Moore; editors, P. Bourque, R. Dupuis, “Guide to the Software Engineering Body of Knowledge
(SWEBOK),” IEEE Computer Society, Pp. 1–1, 2004.

Standishgroup.com, “The Standish Group ©,” www.standishgroup.com, 2012.
R.A. De Araújo, S. Soares, L.I. Oliveira, “Hybrid morphological methodology for software development cost

estimation,” Expert Systems with Aplications, Pp. 6129-6139, 2012.
A. Bonneti, S. Bortot, M. Fedrizzi, R.A. Marques Pererira, A. Molinari, “Modelling group process and effort

estimation in project management using the Choquet integral: An MCDM approach,” Expert Systems with
Aplications, 2012.

R.A. De Araújo, A.L.I. Oliveira, S. Soares, S. Meira, “An evolutionary morphological approach for software
development cost estimation,” Neural Networks, Pp. 285-291, 2012b.

R. LagerstrÖm, L. Marcks von Würtemberg, H. Holm, O. Luczak, “Identifying factors affecting software
development cost and productivity,” Software Quality Journal, Pp. 395-417, 2012.

K. Moløkken-Østvold, M. Jørgensen, “A review of surveys on software effort estimation,” in: International
Symposium on Empirical Software Engineering (ISESE 2003), IEEE Computer Society, Rome, Italy. Pp. 223–
230, 2003.

R.A. De Araújo, A.L.I. de Oliveira, S. C.B. Soares, “A morphological-rank linear approach for software
development cost estimation,” In IEEE international conference on tools with artificial intelligence, IEEE,
2009.

R.A. De Araújo, A.L.I. de Oliveira, S.C.B. Soares, “A shift-invariant morphological system for software
development cost estimation,” Expert Systems with Applications, 38(4), 4162–4168, 2011.

D. Rombach, J. Münch, A. Ocampo, W.S. Humphrey, D. Burton, “Teaching disciplined software development,”
Journal Systems and Software, Elsevier, Pp. 747-763, 2008.

I. González-Carrasco, R. Colomo-Palacios, J.L. López-Cuadrado, F.J. García-Peñalvo, SEffEst: Effort estimation
in software projects using fuzzy logic and neural networks International Journal of Computational Intelligence
Systems, 5:4, (2012) 679-699.

M. Jørgensen, M. Shepperd, “A systematic review of software development cost estimation Studies,” IEEE
Transactions on Engineering Management 33(1), 2007.

B. Boehm, C. Abts, “Software Development Cost Estimation Approaches – A Survey,” University of Southern
California. Los Angeles, CA. 2000.

C. Lopez-Martin, J. Leboeuf- Pasquier, C. Yañez-Marquez, A. Gutierrez-Tornes, “Software Development Effort
Estimation Using Fuzzy Logic: A Case Study,” IEEE Proceedings of the Sixth Mexican International
Conference on Computer Science (ENC’05), 2005, pp. 113-120.

S. Kar, S. Das, G.P. Kanti, “Applications of neuro fuzzy systems: A brief review and future outline,” Applied Soft
Computing 15 (2014) 243–259.

V. Marza, A. Seyyedi, L.F. Capretz, “Estimating Development Time of Software Projects Using a Neuro Fuzzy,”
Approach World Academy of Science, Engineering and Technology. Vol: 2 2008-10-27.

N. Garcia-Diaz, J. Garcia-Virgen, N. Farias-Mendoza, A. Verduzco-Ramirez, R. Martinez-Bonilla, E. Chavez-
Valdez, & Soriano-Equigua, L. “Software development time estimation based on a new Neuro-fuzzy
approach”. In Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on (pp. 1-7).
IEEE.

P. Naur, B. Randell, “Software Engineering: Report on a conference sponsored by the NATO Science
Committee,” Garmisch, Germany, 1969.

F.P. Brooks, “Three Great Challenges for Half-Century-Old Computer Science,” Journal of the ACM, Vol. 50,
No. 1, Pp. 25-26, 2003.

B.A. Kitchenham, E. Mendes, G.H. Travassos, “Cross versus within-company cost estimation studies: a systematic
review,” IEEE Trans SoftwEng 33(5):316–329. 2007.

L.A. Zadeh, “Fuzzy Sets, Information and Control,” Pp. 338–353, 1965.
Z. Zhiwei Xu, T.M. Khoshgoftaar, “Identification of fuzzy models of software cost estimation,” Elsevier Fuzzy

Sets and Systems, Pp.141-163, 2004.
L.A. Zadeh, “From computing with numbers to computing with words–from manipulation of measurements to

manipulation of perceptions,” Journal AMCS, Pp. 307-324, 2002.
J.P. Lewis, “Large Limits to Software Estimation,” ACM Software Engineering Notes, Pp. 54–59, 2001.

http://dx.doi.org/10.1016/j.asoc.2014.10.033

Journal of Information Systems Engineering & Management, 1:4 (2016), 46

© 2016 by author/s 10

E.H. Mamdani, “Advances in the linguistic synthesis of fuzzy controllers,” International Journal of Man-Machine
Studies, Pp. 669–678, 1976.

T. Takagi, M. Sugeno, “Derivation of fuzzy control rules from human operator’s control actions,” In: Proc. the
IFAC Symp. On Fuzzy Information, Knowledge Representation and Decision Analysis, Pp. 55–60. 1983.

T. Takagi, M. Sugeno, “Fuzzy Identification of Systems and its Application to Modelling and Control,” IEEE
Transactions on Systems, Man and Cybernetics, Pp.116-132, 1985.

S. Haykin, “Neural networks, a comprehensive foundation,” Second Edition, Pearson. 1999.
M.T. Su, T.C. Ling, K.K. Phang, C.S. Liew, P.Y. Man, “Enhanced Software Development Effort and Cost

Estimation Using Fuzzy Logic Model,” Malaysian Journal of Computer Science, Vol. 20, No. 2, Pp. 199-207,
2007.

K.K. Aggarwal, Y. Singh, P. Chandra, M. Puri, “Sensitivity Analysis of Fuzzy and Neural Network Models,” ACM
SIGSOFT Software Engineering Notes, Vol. 30, Issue 4, Pp. 1-4, 2005.

X. Huang, D. Ho, J. Ren, L.F. Capretz, “Improving the COCOMO model using a neuro-fuzzy approach,” Applied
Soft Computing, Vol.7, Issue 1, Pp. 29-40, 2007.

D. Nauck, “A Fuzzy Perceptron as a Generic Model for Neuro-Fuzzy Approaches,” In Proceedings of Fuzzy-
Systeme’94, 2nd GI-Workshop, Munich, 1994.

D. Nauck, F. Klawonn, R. Krus, “Foundations of Neuro-Fuzzy Systems,” Wiley, Chichester, 1997.
M.O. Saliu, “Adaptive Fuzzy Logic Based Framework for Software Development Effort Prediction,” A Thesis

Presented to the DEANSHIP OF GRADUATE STUDIES, King Fahd University of Petroleum & Minerals
Dhahran. 2003.

J. Jantzen, “Neuro-fuzzy modelling,” Report no 98-H-874. 1998.
S. Mitra, Y. Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework,” IEEE Transactions

on Neural Networks, Vol.11, No.3, Pp.748-768, 2000.
A. Abraham, “Adaptation of Fuzzy Inference System Using Neural Learning,” Springer-Verlag Berlin Heidelberg,

Pp. 59-83, 2005.
W. Humphrey, “A Discipline for Software Engineering,” Addison Wesley, 1995.
C. Lopez-Martin, C. Yañez-Marquez, A. Gutierrez-Tornes, “Predictive accuracy comparison of fuzzy models for

software development effort of small programs,” The journal of systems and software, Pp. 949-960, 2008.
M. Wei, B. Bai, A.H. Sung, Q. Liu, J. Wang, M.E. Cather, “Predicting injection profiles using ANFIS,” Information

Sciences 177 (2007) 4445–4461.
S.M. Ross, 2004. “Introduction to Probability and Statistics for Engineers and Scientists”, Third Edition, Elsevier

Press.

