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The target position information contained in scattering data is explored in the context of the scalar Helmholtz operator for the
basic two-point scatterer system by means of the statistical estimation framework of the Fisher information and associated Cramér-
Rao bound (CRB) relevant to unbiased position estimation. The CRB results are derived for the exact multiple scattering model
and, for reference, also for the single scattering or first Born approximation model applicable to weak scatterers. The roles of
the sensing configuration and the scattering parameters in target localization are analyzed. Blind spot conditions under which
target localization is impossible are derived and discussed for both models. It is shown that the sets of sensing configuration
and scattering parameters for which localization is impeded are different but equivalent (they have the same size) under the
exact multiple scattering model and the Born approximation. Conditions for multiple scattering to be useful or detrimental to
localization are derived.

1. Introduction

The longstanding question of quantifying the information
content about a wave scatterer that is contained in scattered
field data has recently been addressed in a number of papers
[1–4] via the statistical signal processing framework of the
Fisher information and the associated Cramér-Rao bound
(CRB) [5]. Motivation for this approach is provided by the
practical interest in the role of the physical phenomenon
of multiple scattering in either enhancing [1–4, 6] or di-
minishing [1, 4] the imaging capabilities relative to the
classical reference provided by diffraction theory and, in
particular, inverse scattering in the Born approximation. Shi
and Nehorai [2] showed via exhaustive numerical computa-
tion that multiple scattering can enhance the estimation of
scattering parameters of multiple scattering point targets in
three-dimensional (3D) space, with particular emphasis on
the idea of adding artificial scatterers to enhance estimation
of parameters associated to sought-after scatterers. Simonetti
et al. [3] showed imaging enhancements from multiple
scattering of point targets in 2D space. On the other hand,

Sentenac et al. [1] and Chen and Zhong [4] demonstrated
that while multiple scattering can under certain circum-
stances enhance imaging, it can in other cases be detrimental,
in comparison to the baseline provided by the single scat-
tering or first Born approximation signal model. Chen and
Zhong [4] provided analytically supported examples of con-
ditions under which the multiple scattering effect is necessar-
ily destructive for electromagnetic transverse-electric (TE)
imaging of cylinders. The use of the Fisher information and
companion CRB approach is key to conclusively address such
fundamental questions since it quantifies the best precision
with which scattering parameters can be estimated, in the
statistical framework of unbiased estimation under given
signal corruption or noise models. This quantification is
fundamental. In particular, it is algorithm-independent and
showcases the role of both scattering parameters and imaging
or sensing configuration. In fact, as is explained by Sentenac
et al. [1], and in other related papers [7–10], this is
the logical theoretical framework to quantify fundamental
imaging limits under multiple scattering where the mapping
from object function to data is nonlinear, which prevents
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the direct application of the standard diffraction limits (λ/2
rule of thumb) of inverse scattering problems under the Born
approximation as well as inverse source problems, where the
respective map is linear and therefore tractable via band-
limitation considerations in spatial Fourier domain.

The present paper continues this line of research by
investigating, within the scalar Helmholtz wave equation for-
malism that arises in acoustics, electromagnetics, and optics,
the Fisher information and CRB for the fundamental case
of two point scatterers in 3D space, with particular emphasis
on the problem of target localization. This concrete canonical
scattering system is the simplest scatterer exhibiting multiple
scattering and provides a mathematically tractable frame-
work to tackle a number of fundamental questions. Partic-
ular attention is given to the exact multiple scattering model,
but, for reference purposes, we also consider the special case
of the first Born approximation applicable to weak scatterers,
which sheds insight into the role of multiple scattering on
either enhancing or diminishing target localization relative
to the baseline provided by the Born approximation. The
derived Fisher information and CRB results for two point
targets are used to interpret and illustrate through both
theoretical analysis and computer examples the roles of the
sensing configuration and the scattering parameters on the
task of localizing the targets. Concrete conditions are given,
backed by the theoretical results, under which localization is
facilitated or obstructed, and the two scattering models are
comparatively analyzed both analytically and numerically.

The main contributions of the present paper can be
summarized as follows. While past focus has centered on
the resolution question [1, 3, 4], we consider the effect
of multiple scattering on localization. We derive closed-
form Fisher information and CRB expressions applicable to
the localization of a given two-point target system (whose
scattering parameters except its position are known) and
exploit the implications of the resulting developments with
the aid of computer illustrations. We derive the conditions
under which localization is impeded, both under the exact
multiple scattering model and in the approximate weak
scattering model. It is shown that the sets of sensing con-
figuration and scattering parameters for which localization
is impeded are different but equivalent (they have the
same size) under the exact multiple scattering model and
the Born approximation. We explicitly give the conditions
under which multiple scattering enhances or diminishes
localizability relative to the reference provided by the first
Born approximation. We provide concrete examples where
multiple scattering outperforms the Born approximation
model with regards to localization (meaning that the Born
approximation predictions are unrealistically pessimistic),
and vice versa situations where the predictions of the Born
approximation model are better (unrealistically optimistic).
In addition, the adoption of the canonical system of two
point scatterers allows us to gain insight into the role of
both sensing configuration and scattering parameters in the
localization of targets, and, in particular, the mathematical
expressions for the Fisher information and CRB derived in
the paper clearly demonstrate factors that depend only on
configuration or on scattering parameters as well as more

complex factors that depend on both. Furthermore, the for-
mally tractable two targets case is not without many practical
applications. The theoretical and computational results of
this work relevant to sensing configurations that enhance
or diminish information content, including blind spots in
the data, and conditions under which multiple scattering
is useful or detrimental, have bearings in practical radar
and sonar systems interrogating two closely spaced targets,
where their own multiple scattering can be used by the
targets to reduce their detection or by the system to optimally
interrogate them so as to gain maximal information.

2. Review of the Multiple Scattering Model

We consider scattering in the context of the Helmholtz
operator. Thus, the probing or incident fields Ψ(i)(r) obey

(∇2 + k2)Ψ(i)(r) = 0, (1)

where k = 2π/λ is the wavenumber of the field corre-
sponding to wavelength λ. In the presence of scatterers or
inhomogeneities the total field Ψ(r) obeys

(∇2 + k2)Ψ(r) = V(r)Ψ(r), (2)

where V(r) = k2−κ2(r), where κ(r) denotes the wavenumber
of the field in the total medium including the scatterers. From
(1) and (2), the scattered field

Ψ(s)(r) = Ψ(r)−Ψ(i)(r) (3)

obeys
(∇2 + k2)Ψ(s)(r) = V(r)Ψ(r). (4)

The solution of (4) obeying the radiation condition is
given by

Ψ(s)(r) =
∫

d3r′V(r′)Ψ(r′)G(r− r′), (5)

where Green’s function G is given by

G(r− r′) = − eik|r−r′|

4π|r− r′| . (6)

In the far zone where |r − r′| � r − s · r′, where r = |r|
and s = r/r, we have

G(r− r′) ∼ − eikr

4πr
e−iks·r′ , (7)

which upon substitution in (5) yields the expression for the
far scattered field:

Ψ(s)(r) ∼ − eikr

4πr
f
(

s;Ψ(i)
)

, (8)

where the quantity f (s;Ψ(i)) is the far-field scattering
amplitude and is given by

f
(

s;Ψ(i)
)
=
∫

d3r′V(r′)Ψ(r′)e−iks·r′ . (9)
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Figure 1: Conceptual illustration of the scattering system.

We focus next on the point scatterer model that is
relevant to scatterers having small dimensions compared to
the wavelength [11]. This model is well known to be at the
heart of many physical models of acoustic, electromagnetic,
and quantum scattering (see [12] for an overview of the
accuracy and applicability of the point scatterer model in
electromagnetics and quantum theory; see also [13] for a
relevant distributional interpretation of the point scatterer
including a discussion of the associated Foldy-Lax multiple
scattering model for point scatterers which is adopted next).
In particular, for point targets having locations Rm, m =
1, 2, . . . ,M and scattering strengths τm, m = 1, 2, . . . ,M, we
consider the Foldy-Lax multiple scattering model (see, e.g.,
[13], Tsang et al. [14], page 379), where the scattered field is
given by the discrete counterpart of (5):

Ψ(s)(r) =
M∑

m=1

τmΨ(Rm)G(r− Rm), (10)

where

Ψ(Rm) = Ψ(i)(Rm) +
M∑

n=1
n /=m

τnΨ(Rn)G(Rm − Rn). (11)

By using (7) in the expressions (10) and (11) that define the
scattered field, one arrives at (8) where the corresponding
scattering amplitude is given by the discrete counterpart of
(9):

f
(

s;Ψ(i)
)
=

M∑

m=1

τmΨ(Rm)e−iks·Rm . (12)

To fix ideas, let us focus on a system of two point
scatterers having complex scattering strengths τ1 and τ2, and
positions R1 = (0, 0,d1) and R2 = (0, 0,d2), in the z axis.
A conceptual illustration is given in Figure 1. We assume
that d2 > d1. Let the target separation d = d2 − d1 > 0.
Consider incident plane waves eiksi·r with incidence polar
angle α (cosα = si·ẑ) and far-zone sensing at scattering angle
β (cosβ = s · ẑ). For this two-scatterer system, and under

plane wave excitation, expression (11) yields the system of
equations:

Ψ(R1) = eikd1 cosα + τ2Ψ(R2)G(d)

Ψ(R2) = eikd2 cosα + τ1Ψ(R1)G(d),
(13)

where

G(d) = − eikd

4πd
, (14)

and whose solution under the nonresonance condition
τ1τ2G2(d) /= 1, which will be assumed in the following, is
given by

Ψ(R1) = F(d, τ1, τ2)
{
eikd1 cosα

[
1 + τ2G(d)eikd cosα

]}
,

Ψ(R2) = F(d, τ1, τ2)
{
eikd1 cosα

[
τ1G(d) + eikd cosα

]}
,

(15)

where

F(d, τ1, τ2) = [1− τ1τ2G
2(d)

]−1
. (16)

Note that, for nonzero τ1 and τ2, F → 0 as d → 0 while,
for nonzero d, F → 1 as |τ1τ2G2(d)| → 0, and generally, for
finite parameters d, τ1, τ2, F /= 0 and |F| /= 1, facts to be used
implicitly in the following.

The scattering amplitude including multiple scattering
takes the form:

f
(
α,β

) = F(d, τ1, τ2)eikd1g(α,β)

×
[
τ1 + τ2e

ikdg(α,β) + τ1τ2G(d)Q
(
d,α,β

)]
,

(17)

where

g
(
α,β

) = cosα− cosβ, (18)

Q
(
d,α,β

) = eikd cosα + e−ikd cosβ

= 2eikdg(α,β)/2 cos

[
kdg′

(
α,β

)

2

]

,
(19)

where we have introduced

g′
(
α,β

) = cosα + cosβ. (20)

For the special case of weak scatterers, where |τmG(d)| �
1, m = 1, 2, this takes the first Born approximation form
f (α,β) � fBorn(α,β), where

fBorn
(
α,β

) = eikd1g(α,β)
[
τ1 + τ2e

ikdg(α,β)
]
. (21)

In these expressions, the angles α and β lie in the range [0,π].
Note that under the special condition:

Q
(
d,α,β

) = 0 (22)

the exact model in (17) takes, for arbitrary scattering
strengths, the quasi-Born approximation form

f
(
α;β

) = F(d, τ1, τ2)eikd1g(α,β)
[
τ1 + τ2e

ikdg(α,β)
]
. (23)
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This special case will play a part in the target localization
analysis.

3. Fisher Information and Cramér-Rao Bounds
of Scattering Parameters

We consider the signal model:

K̃(ξ) = K(ξ) + W, (24)

where K is the noise-free data vector, K̃ is the collected
noisy data vector, ξ is the estimated parameter vector, and
W is complex Gaussian noise with known variance σ2. The
parameter vector ξ depends on the particular estimation
problem under consideration. For example, assuming that
the noise variance σ2 is known, a general problem consists
of estimating d1 and d and the real and imaginary parts of
the scattering strengths, that is,

ξ = [d1;d;�{τ1};	{τ1};�{τ2};	{τ2}], (25)

where � and 	 denote the real and imaginary parts,
respectively. In this work, we focus on the more specialized
case of estimating d1 under prior knowledge of the other
parameters, in particular, ξ = d1, which simulates a
canonical target localization problem including internal
multiple scattering at the two-target system. This simplifi-
cation reduces the analytical complexity and gives a lot of
mathematical and computational insight into the effects of
the sensing configuration and scattering parameters in the
estimation of target position.

The data entries Kn, n = 1, 2, . . . ,N of the N × 1 data
vector K are the values of the scattering amplitudes f (αn,βn)
measurable in scattering experiments corresponding to given
pairs (αn,βn) of incident and scattering angles αn ∈ [0,π]
and βn ∈ [0,π], respectively. From (17) the entries Kn are
given by

Kn(ξ) = F(d, τ1, τ2)eikd1g(αn,βn)

×
[
τ1 + τ2e

ikdg(αn,βn) + τ1τ2G(d)Q
(
d,αn,βn

)]
.

(26)

The respective Born approximation is given from (21) by
Kn(ξ) � KBorn

n (ξ), where

KBorn
n (ξ) = eikd1g(αn,βn)

[
τ1 + τ2e

ikdg(αn,βn)
]
. (27)

A fundamental measure of the estimability of the param-
eters of interest, ξ, from the noisy data is the Cramér-Rao
lower bound or CRB. The CRB, CRB(ξi), of the parameter ξi,
constitutes a lower bound, achievable under mild conditions,
for the variance var(ξ̂i) = E[(ξi − ξ̂i)

2] (where E denotes the
expected value) of any unbiased estimate ξ̂i of the parameter
ξi. It is given by the diagonal elements of the so-called Fisher
information matrix (FIM) [5, equation (3.20)], in particular,

var
(
ξ̂i
)
≥ [I−1(ξ)

]
i,i = CRB(ξi), (28)

where the FIM I(ξ) is given by [5, equation (15.52)]

I(ξ)i, j = 2�
[
∂KH(ξ)
∂ξi

C−1
K̃

(ξ)
∂K(ξ)
∂ξj

]

, (29)

where H denotes the conjugate transpose, and CK̃ is the
covariance matrix which in our case is simply CK̃ = σ2I
where I denotes the N × N identity matrix. Therefore, (29)
reduces to

I(ξ)i, j = 2σ−2�
[
∂KH(ξ)
∂ξi

∂K(ξ)
∂ξj

]

(30)

or equivalently to the sum of the FIM of all the observations,
in particular,

I(ξ)i, j =
N∑

n=1

I(n)
i, j (ξ), (31)

where the entry I(n)
i, j of the FIM (I(n)(ξ)) of the nth

scattering experiment, corresponding to incidence angle αn
and scattering or sensing angle βn, is given by

I(n)
i, j (ξ) = 2σ−2�

[
∂K∗n (ξ)
∂ξi

∂Kn(ξ)
∂ξj

]

. (32)

In addition, it is not hard to show that

CRB(ξi) ≥ [I(ξ)i,i]
−1 (33)

with equality holding if ξ is a scalar, for example, if the
target strengths and separation are known, but the position
d1 is unknown (two-target system localization). Thus, the
diagonal entries of the FIM are relevant via (33) as lower
bound for the CRB itself, or as the exact CRB when only
one scattering parameter is estimated (scalar ξ). In the fol-
lowing, rather than consider the full FIM matrix (for two or
more parameters), which is more difficult to compute an-
alytically, and harder to interpret, we explore closed-form
expressions for the Fisher information and CRB relevant
to target localization when all the parameters except d1 are
known (two-target system localization). This task is more
analytically tractable and still gives a lot of insight about the
information pertinent to localizing targets that is contained
in the scattering data.

4. Target Localization Analysis

This analysis characterizes the information about the scat-
terer position, for a known scatterer formed by two point
scatterers with given strengths τ1 and τ2 and separation dis-
tance (d). From a radar or sonar point of view, the question is
up to what point the localizability of the two-point scatterer
target is affected by the target parameters d, τ1, τ2, and the
particular remote sensing configuration (in the present case,
the angles (αn,βn) for which scattering data are collected).

The localization problem consists in estimating a refer-
ence point in the scatterer, for example, d1 or the center point
dc = (d1 + d2)/2. The Fisher information results using ξ = d1
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and ξ = dc are, of course, the same. In the following, we
consider ξ = d1. Using ξ = d1, the Fisher information I(d1)
is given by (31), where the Fisher information I(n)(d1) of the
nth experiment is evaluated by applying (32) to the signal
models in (26) and (27). For the Born approximation model
based on (27), one obtains

I(n)
Born(d1) = 2k2g2(αn,βn

)
SNRBorn

(
αn,βn

)
, (34)

where

SNRBorn
(
α,β

) =
∣
∣
∣τ1 + τ2eikdg(α,β)

∣
∣
∣

2

σ2
. (35)

For the more general multiple scattering model based on
(26), one obtains

I(n)(d1) = 2k2g2(αn,βn
)
SNR

(
αn,βn

)
, (36)

where

SNR
(
α,β

)

= σ−2|F(d, τ1, τ2)|2

× |τ1 + τ2e
ikdg(α,β) + τ1τ2G(d)Q(d,α,β)|2

= σ−2|F(d, τ1, τ2)|2

×
{

σ2SNRBorn
(
α,β

)

+ 2�
[
τ1τ2G(d)Q

(
d,α,β

)(
τ∗1 + τ∗2 e

−ikdg(α,β)
)]

+
2|τ1|2|τ2|2

(4πd)2

[
1 + cos

(
kdg′

(
α,β

))]
}

.

(37)

In general, in both the exact multiple scattering and Born
approximation contexts, the Fisher information I(n)(d1)
and therefore the associated localizability of the two-target
system is seen to depend on the respective SNR and
the difference of cosine term g(αn,βn) defined by (18).
The latter depends only on the sensing configuration (the
incidence and scattering or observation angles). For the
sensing configurations where g(αn,βn) = 0, in particular,
the experiments where αn = βn which we shall refer to as
“line of sight (LOS)” condition, it is not possible to extract
information about the two-target system location from the
scattering data, this being the case for both weak and strong
scattering systems. However, if one captures non-line-of-
sight (NLOS) data (such that αn /=βn) then g(αn,βn) /= 0 and
one may deduce the sought-after location for nonzero SNR.
For a given α, the sensing configuration term (g2(α,β)) is
maximized if β = π for α ∈ [0,π/2), if β = 0 for α ∈
(π/2,π], and if β = 0 or π for α = π/2. And with these
values of β, the values of α giving the largest g2(α,β) = 4
are α = 0 (with β = π) and α = π (with β = 0),
which correspond to special cases of backscattering-based
sensing, where β = π − α as in monostatic radar and

10110−1 100
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101
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Figure 2: Plot of 1/|F|2 versus d for τ1 = 1 = τ2.

sonar systems. In addition, in general the SNR differs in
the exact versus approximate models. We see from (37) that
in the exact model it depends on the scattering parameters
(d, τ1, τ2) through the factor |F(d, τ1, τ2)|2 defined according
to (16) and, in a more complex manner, through the
large multiplicative parenthesis term in (37), on both the
scattering parameters and the sensing configuration. The
Born approximation model result (35) does not have the F
factor and, in addition, involves only the first of the three
terms in the outer parenthesis of the more general result (37).
The nature of this important factor is illustrated in Figure 2
which shows a plot of |F(d, τ1, τ2)|−2 (which is proportional
to the CRB for the estimation of d1, CRB(d1)), versus the
targets’ separation d, for fixed values τ1 = 1 = τ2. To
aid interpretation, here and in the subsequent numerical
illustrations, we consider the wavenumber k = 2π/λ for
unit-amplitude wavelength λ = 1 so that the value of d
shown in the plots is measured directly in wavelengths.
Clearly for the case under illustration, the quantity |F|−2

is almost unity for moderately large d (>0.1) and grows
exponentially as d → 0. One expects that maximization
(minimization) of this scattering-parameter-dependent fac-
tor enhances (diminishes) localizability. Furthermore, in the
special quasi-Born approximation condition (22) and (23)
the exact and approximate models differ only by this factor,
so that whenever |F(d, τ1, τ2)| > 1 (or <1), the SNR and
Fisher information in the exact model is higher (or lower)
than the SNR and information in the approximate model,
while if |F| = 1, the two models perform the same. Then
Q(d, τ1, τ2) = 0 and |F| > 1 (or <1) is a concrete scenario,
where the two models can be compared via this factor only.

4.1. Blind Spots for Target Localization. We discuss next
concrete examples of “blind spots” for target localization
in the space of scattering parameters and sensing angles
(values of these parameters and angles for which localization
is impeded), as applicable to the exact and approximate
models. First we emphasize that no information about the
location is contained in LOS data, and this holds for both
the exact and approximate models. Another situation when
the experiment does not render information is when due
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to the combined role of scattering parameters and sensing
configuration the SNR happens to vanish.

Within the Born approximation model, the zero SNR
condition is from (35):

τ1 + τ2e
ikdg(α,β) = 0. (38)

There are infinite values of the scattering parameters and the
sensing angles (α,β) for which this condition is obeyed. In
particular, the constraint equation (38) is equivalent to

|τ1| = |τ2|,
kdg

(
α,β

)

= kd
(
cosα− cosβ

)

= θ1 − θ2 + lπ, l = ±(2p + 1
)
, p = 0, 1, 2, . . . , pmax,

(39)

where the real-valued θ1, θ2 are the phase angles of τ1, τ2, that
is, τ1 = |τ1|eiθ1 , τ2 = |τ2|eiθ2 . Since the maximum value of
|g(α,β)| = 2, then pmax is the maximum value of integer
index p ≥ 0 in (39) that obeys |(θ1−θ2)/π±(2p+1)| ≤ 4d/λ,
that is,

(2p + 1)2 ± 2
(
2p + 1

)
(θ1 − θ2)
π

+
(θ1 − θ2)2

π2
≤ 16

(
d

λ

)2

.

(40)

For example, if τ1 = τ2 then from (39) if the condition
kdg(α,β) = lπ, l = ±(2p + 1), p = 0, 1, 2, . . . , pmax holds,
then SNRBorn(α,β) = 0. Given any choice of the angles α,β,
the target separations d = (2p + 1)λ/[2|g(α,β)|] > 0, p =
0, 1, 2, . . . render zero SNR, SNRBorn(α,β) = 0. Alternatively,
for any separation distance d, then SNRBorn(α,β) = 0 for the
angles α,β such that g = ±(2p+ 1)λ/2d, p = 0, 1, 2, . . . , pmax,
where pmax is defined according to the discussion in (40) with
θ1 = θ2. In passing, we note that the smallest d for which
condition (40) with θ1 = θ2 can be obeyed is d = λ/4 (giving
pmax = 0), hence for d < λ/4, SNRBorn /= 0 for the same
scatterer strength case, τ1 = τ2, as is illustrated in one of the
plots in the numerical illustration section (see Figure 6(b)).

Thus clearly under the Born approximation model, there
are values of the parameters and the sensing angles which
can be thought of as “blind spots” for target data acquisition,
that is, they correspond to zero SNR signals and information.
Referring to the more general multiple scattering model
result (37), we see that the vanishing of the SNR under
the Born approximation does not imply the corresponding
vanishing of SNR under the more general multiple scattering
model. On the other hand, blind spots are also possible under
multiple scattering. To illustrate this with a concrete example,
we note that if SNRBorn(α,β) = 0 so that (39) and (40) are
obeyed, then it follows from (37) that SNR(α,β) = 0 if and
only ifQ(d,α,β) = 0, which is the quasi-Born approximation
condition discussed in (22) and (23). According to (19), this
restriction can be stated as

kdg′
(
α,β

)

= kd
(
cosα + cosβ

)

= lπ, l = ±(2p + 1
)
, p = 0, 1, 2, . . . .

(41)

Thus if conditions (39), (40), and (41) are all obeyed
under the constraints | cosα| ≤ 1 and | cosβ| ≤ 1, then
SNR(α,β) = 0. The general condition can be stated as

cosα = λ

4d

[
l1 + l2 +

(θ2 − θ1)
π

]
,

cosβ = λ

4d

[
l2 − l1 − (θ2 − θ1)

π

]
,

l1 = ±
(
2p1 + 1

)
, p1 = 0, 1, 2, . . . ,

l2 = ±
(
2p2 + 1

)
, p2 = 0, 1, 2, . . . ,

|cosα| =
∣
∣
∣
∣
λ

d

[
l1 + l2

4
+

(θ2 − θ1)
2π

]∣∣
∣
∣ ≤ 1,

∣
∣cosβ

∣
∣ =

∣
∣
∣∣
λ

d

[
l2 − l1

4
+

(θ2 − θ1)
2π

]∣∣
∣∣ ≤ 1,

(42)

where asabove mentioned the real-valued θ1, θ2 are the phase
angles of τ1, τ2, that is, τ1 = |τ1|eiθ1 , τ2 = |τ2|eiθ2 . An example
is the case τ1 = τ2, and l1 = l = l2, which implies β = π/2,
which further implies d = lλ/(2 cosα) > 0, l = ±(2p + 1),
p = 0, 1, 2, . . ..

Another important issue is the implications of these
results for the case of monostatic radar or sonar observations,
where for a given incidence angle α one captures data for
the backscattering direction associated to β = π − α. In this
special case, condition (41) cannot be obeyed; therefore, the
second and third terms in (37) do not generally vanish. On
the other hand, the first term in (37) vanishes if condition
(39) holds, where in this case cosβ = − cosα, and this can
in fact happen. For example, if τ1 = τ2, and d = λ/4, then
for α = 0 (or for α = π) the backscattering SNRBorn(α =
0,π − α = π) = 0 (or SNRBorn(α = π,π − α = 0) =
0). In this case, however, the exact SNR(α = 0,π − α) /= 0
due to the nonvanishing of the second and third terms in
(37) as we discuss in the numerical illustrations section.
This is a concrete example of a situation where multiple
scattering enhances the sensing capabilities, in this case, the
localizability, relative to what one would have expected from
the approximate model.

In the following, we expand the analysis of the nonlo-
calizability conditions. We establish the fundamental result
that the nonlocalizable sets of sensing configuration and
scattering parameters of the two models are actually of the
same size.

4.2. Nonlocalizability Conditions. We elaborate the necessary
and sufficient conditions for impossible target localizability
(nonlocalizability conditions or blind spots). Targets can be
located if and only if such nonlocalizability conditions are
not obeyed. The derived conditions will be later compared
with those for nonlocalizability under the Born approxima-
tion, and it will be conclusively demonstrated that the set
of values of (d, τ1, τ2,αn,βn) yielding nonlocalizability under
the Born approximation is of the same size as the set of
values of (d, τ1, τ2,αn,βn) yielding nonlocalizability under
the exact scattering model. This is very important because
it conclusively establishes at least for the basic two-point
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target system that it is not true that multiple scattering is
usually beneficial in enhancing localization and imaging, but
that on the contrary the two models are comparable at least
regarding the sizes of their localizable and nonlocalizable
sets of values of the combined scattering and configuration
parameters.

As discussed earlier, localizability is impeded for identical
angles αn = βn. This is the trivial LOS condition discussed at
the beginning of this section. Nonlocalizability can also occur
for the nontrivial case αn /=βn if and only if the following
condition holds. Since F /= 0 for finite values of d, τ1, τ2, then
under the exact scattering model (36) and (37) I(n)(d1) = 0
for αn /=βn if and only if

τ1 + τ2e
ikdg(αn,βn) + τ1τ2G(d)Q

(
d,αn,βn

) = 0. (43)

There are infinite values of the scattering and configuration
parameters for which this condition is obeyed. For instance,
one may choose any allowed value of the angles αn ∈ [0,π]
and βn ∈ [0,π] and of the targets’ separation d > 0, as
well as any τ1 ∈ C, which makes (43) a linear equation
with one unknown (τ2), so that there is a unique value of τ2

obeying this condition. Therefore, the dimensionality of the
nonlocalizable set of scattering and configuration parameters
(d, τ1, τ2,αn,βn) is 5 (d, αn, and βn are real, while τ1 and τ2

are complex) which represents a significant dimensionality
reduction of the entire parameter space which is 7. Thus,
if the scattering and configuration parameters are randomly
selected, with overwhelming probability, target localizability
is not impeded. Only under the restricted nonlocalizability
condition (43) which applies to a reduced subset of parame-
ter space, the two-target system cannot be located.

The respective Born approximation analysis is as follows.
As explained in the discussion in Section 4.1 regarding (38),
the necessary and sufficient condition for nonlocalizability in
the nontrivial case αn /=βn is (38) with α = αn and β = βn.
As in the preceding exact multiple scattering result, one can
without loss of generality fix the values of d, αn, and βn,
as well as assign to τ1 any complex value, and subsequently
compute via (38) the unique value τ2 which obeys this
relation. As in the multiple scattering discussion, this means
the dimensionality of the nonlocalizable parameter set is
5, while the entire parameter set has dimensionality 7.
Furthermore, for any nonlocalizable state built above in the
exact scattering framework for fixed d, αn, βn and any one of
the scattering strengths, one can always build a counterpart
and unique nonlocalizable state for the approximate model,
and vice versa, so the two sets are linked in a one-
to-one manner (they are mathematically equivalent sets),
which demonstrates that when studied in the wholeness of
parameter space, the exact multiple scattering case cannot
be regarded as informationally richer than the approximate
model. In addition, we recall that we showed earlier in the
discussion in Section 4.1 regarding (41) that the necessary

and sufficient condition for I(n)(d1) = 0, I(n)
Born(d1) = 0 is (38)

and Q = 0. A summary of the derived relations between the
two nonlocalizable sets for the exact and approximate models
is shown in Figure 3. Note that based on the discussion
above the two sets are of the same size. We have completed

g = 0 or SNR = 0 Q = 0

Exact non localizable set

Born approximation

non localizable set

Intersection

SNR = 0 Q = 0

ocalizable set

Born appro

non localiz

g = 0 or SNRBorn = 0

Figure 3: Venn diagram illustrating the relations between the
nonlocalizable sets in configuration and parameter space for the
exact and approximate models. Note that, as shown in the paper,
the two sets are of the same size, and the intersection between them
is defined by the condition Q = 0.

the picture by discussing the intersection condition Q = 0
illustrated in the figure.

4.3. Analog Comparative Analysis. We have shown that in
the entire parameter space the two models are comparable
with regards to localizability. However, this particular point
of view is binary (information is zero or nonzero), so it
does not apply to the actual numerical information values
which may tend to be higher in either model. To complete
the analytical picture, we derive necessary and sufficient
conditions for the target localizability, as measured by the
Fisher information and associated CRB, to be greater in
either scattering model. The following results can be thought
of as the analog complement of the binary nonlocalizability
(versus localizability) results derived above.

We derive next conditions, for I(n)(d1) > I(n)
Born(d1) and for

the opposite I(n)(d1) < I(n)
Born(d1). First of all, this is possible

only if g /= 0 (which we assume next) since for g = 0 both
information vanish as we have elaborated earlier.
Necessary and Sufficient Condition. I(n)(d1) > I(n)

Born(d1): It
follows from (34), (35), (36), and (37) that I(n)(d1) >
I(n)

Born(d1) if and only if g /= 0 and SNR > SNRBorn, in
particular,

|F(d, τ1, τ2)|
∣
∣∣τ1 + τ2e

ikdg(αn,βn) + τ1τ2G(d)Q
(
d,αn,βn

)∣∣∣

>
∣
∣
∣τ1 + τ2e

ikdg(αn,βn)
∣
∣
∣.

(44)

As a special case, this implies that if Q(d,αn,βn) = 0, then the

necessary and sufficient condition for I(n)(d1) > I(n)
Born(d1) is

∣∣F
(
d,αn,βn

)∣∣ > 1. (45)
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Sufficient Conditions A. I(n)(d1) > I(n)
Born(d1): Furthermore, the

result (44) also implies, via the reverse triangle inequality, the

following sufficient condition for I(n)(d1) > I(n)
Born(d1):

∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

>
[∣∣F−1(d, τ1, τ2)

∣
∣ + 1

]∣∣∣τ1 + τ2e
ikdg(αn,βn)

∣
∣∣,

(46)

as well as the following sufficient condition for I(n)(d1) >

I(n)
Born(d1),

|F(d, τ1, τ2)| > 1,
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

<
[
1− ∣∣F−1(d, τ1, τ2)

∣∣]
∣
∣
∣τ1 + τ2eikdg(αn,βn)

∣
∣
∣.

(47)

Necessary Condition A′. I(n)(d1) > I(n)
Born(d1): It also follows

from (44) and the triangle inequality that a necessary
condition for (44) to hold is

∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

>
[∣∣F−1(d, τ1, τ2)

∣∣− 1
]∣∣
∣τ1 + τ2e

ikdg(αn,βn)
∣
∣
∣.

(48)

Sufficient Condition A′′. I(n)
Born(d1) ≥ I(n)(d1): A corollary of

the necessary condition A′ in (48) is that the following is a

sufficient condition for I(n)
Born(d1) ≥ I(n)(d1):

|F(d, τ1, τ2)| < 1,
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

≤ [∣∣F−1(d, τ1, τ2)
∣
∣− 1

]∣∣
∣τ1 + τ2eikdg(αn,βn)

∣∣
∣.

(49)

This condition is related to and complements sufficient
condition A discussed above. It can be shown that this result
is actually stronger, using < in place of ≤ in the second

equation it is a sufficient condition for I(n)
Born(d1) > I(n)(d1)

(strict inequality).
Like its counterpart (44), the necessary and sufficient

condition for I(n)
Born(d1) > I(n)(d1) is g(αn,βn) /= 0 and

|F(d, τ1, τ2)|
∣
∣
∣τ1 + τ2e

ikdg(αn,βn) + τ1τ2G(d)Q
(
d,αn,βn

)∣∣
∣

<
∣∣
∣τ1 + τ2e

ikdg(αn,βn)
∣∣
∣.

(50)

On the other hand, if Q(d,αn,βn) = 0, then the necessary

and sufficient condition for I(n)
Born(d1) > I(n)(d1) is

|F(d, τ1, τ2)| < 1. (51)

Sufficient Conditions B. I(n)
Born(d1) > I(n)(d1): Moreover, by

means of an analysis based on the reverse triangle inequality
which is similar to the one leading to the sufficient conditions

A one can also show that a sufficient condition for I(n)
Born(d1) >

I(n)(d1) is
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

> [|F(d, τ1, τ2)| + 1]

×
∣∣
∣τ1 + τ2e

ikdg(αn,βn) + τ1τ2G(d)Q
(
d,αn,βn

)∣∣
∣.

(52)

Another sufficient condition for I(n)
Born(d1) > I(n)(d1) arising

from the same analysis is

|F(d, τ1, τ2)| < 1,
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

< [1− |F(d, τ1, τ2)|]
×
∣
∣∣τ1 + τ2eikdg(αn,βn) + τ1τ2G(d)Q

(
d,αn,βn

)∣∣∣.

(53)

Necessary Condition B′. I(n)
Born(d1) > I(n)(d1): Also, it follows

from (50) that a necessary condition for I(n)
Born(d1) > I(n)(d1)

is
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

> [|F(d, τ1, τ2)| − 1]

×
∣
∣∣τ1 + τ2e

ikdg(αn,βn) + τ1τ2G(d)Q
(
d,αn,βn

)∣∣∣.

(54)

Sufficient Condition B′′. I(n)(d1) ≥ I(n)
Born(d1): A corollary of

necessary condition B′ is the following sufficient condition

for I(n)(d1) ≥ I(n)
Born(d1):

|F(d, τ1, τ2)| > 1,
∣
∣τ1τ2G(d)Q

(
d,αn,βn

)∣∣

≤ [|F(d, τ1, τ2)| − 1]

×
∣
∣∣τ1 + τ2eikdg(αn,βn) + τ1τ2G(d)Q

(
d,αn,βn

)∣∣∣,

(55)

which is related to and complements sufficient conditions B
established above. This result is actually stronger, using the
strict inequality in the second equation it is a sufficient con-

dition for I(n)(d1) > I(n)
Born(d1), as can be shown independently

from (44).
The above conditions are rather straightforward yet

very useful expressions that allow one to know a priori
without doing the Fisher information and CRB calculations
if under given conditions of interest the multiple scattering is
beneficial or detrimental to localization relative to the Born
approximation predictions. Consider, for example, the first
of the conditions A. Letting τ1 = τ = τ2, we find from (46)
that if

|τG(d)| > [∣∣F−1(d, τ, τ)
∣∣ + 1

]
∣
∣
∣
∣∣

cos
[
kdg

(
αn,βn

)
/2
]

cos
[
kdg′

(
αn,βn

)
/2
]

∣
∣
∣
∣∣,

(56)
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then we know without the need of further calculations that
the multiple scattering events facilitate greater localization
information than the first-order or single-scattering signal
alone, and superresolution beyond the Born approximation
limits is accessible. As a special case, consider the vanishing
of cos[kdg(αn,βn)/2], which corresponds to SNRBorn = 0.
As long as the denominator in (56) does not vanish, the
exact model information is necessarily greater than zero
since |τG(d)| > 0, in agreement with the results derived
earlier in the paper, since the only way the denominator
vanishes is if Q(d,αn,βn) = 0 (which makes the condition
above useless due to the resulting 0/0 indeterminacy) which
is in essence the result summarized in the Venn diagram
in Figure 3. In the special case of backscattering data, the
sufficient condition (56) becomes

|τG(d)| > [∣∣F−1(d, τ, τ)
∣
∣ + 1

]|cos(kd cosαn)|. (57)

One of the implications is that if cos(kd cosαn) = 0, that is,
kd cosαn = lπ/2, l = ±(2p + 1), p = 0, 1, 2, . . ., then the
exact multiple-scattering always enhances the backscattering
localization information relative to the single-scattering data.
This is consistent with the discussion on backscattering at the
end of Section 4.1.

5. Numerical Illustrations

5.1. Single Observation. Next we discuss a selection of single
observation or single-input single-output (SISO) experi-
ments, which illustrate how variations in the system’s param-
eters (scatterers’ separation d, scatterer strengths (τ1, τ2))
and observer configuration (incident and observation angles
αn and βn) affect the estimation of scatterer location. In
generating the following plots, we use σ2 = 1 so that the
plotted CRB results are normalized by the noise variance
σ2. We consider unit value wavelength λ = 1 so that the
wavenumber k = 2π/λ = 2π and all distances (e.g., d) can
be given in the plots in terms of the wavelength.

First we examine the effect on localization information,
as described by CRB(d1), of the direction of the receiver,
β1 = β, for the SISO experiment corresponding to incidence
angle α1 = α = 0. Figure 4 shows two plots of CRB(d1)
versus β for α = 0 and τ1 = 1 = τ2. The two plots shown
correspond to d = λ/4 and d = λ/2, respectively. The general
tendency is for CRB(d1) to be larger for the small angles β
near zero and to be smaller for the large angles β near π. Thus
it seems that as a rule of thumb one should expect to extract
more location information from backscattering and near-
backscattering data than from forward scattering and near-
forward scattering experiments. This is anticipated from the
discussion following (37), since the Fisher information is
proportional to g2 which for α = 0 is maximal at β = π.
However, we also expect from the discussion in (42) that
for d = λ/2, CRB(d1) = ∞ for β = π/2, and this is, in
fact, the behavior shown in the figure. Thus for d = λ/2,
CRB(d1) decays with β except in the approximate interval
(π/3,π/2) where it grows as it reaches a peak at β = π/2,
and then decays steadily beyond π/2 up to π. In contrast, for
d = λ/4, CRB(d1) decays with β in the approximate interval
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Figure 4: CRB(d1) corresponding to scattering strength τ1 = 1 = τ2

and incidence angle α = 0, as a function of the observation angle β,
for scatterers’ separations d = λ/4 and d = λ/2.

(0, 0.6π) and levels off after rising slightly for β � 0.6π
up to π. It is important to note that, as explained in the
paragraph following the discussion of (42), under the Born
approximation the location information vanishes completely
for d = λ/4 if β = π. In contrast, as shown in the plot which
corresponds to the multiple scattering model, for these values
(d = λ/4 and β = π) in general the Fisher information does
not vanish (and the respective CRB is not infinity) under the
multiple scattering model. This illustrates a (backscattering)
scenario where multiple scattering enables information that
is not present in the Born approximation model or for weak
targets.

Figure 5 shows plots of CRB(d1) versus α1 = α for
backscattering experiments for which the observation angle
β1 = β = π − α. In these calculations, τ1 = 1 = τ2. Overlaid
plots for the multiple scattering and Born approximation
models are shown for d = λ/4 and d = λ/2. For α = π/2
and the corresponding β = π/2, g = 0 so that from (34)
and (36) CRB(d1) = ∞ for any values of the scattering
parameters (d included), as shown in these plots. For d =
λ/4, the Born approximation model requires in view of (39)
and (40) that CRB(d1) = ∞ when α = 0,π, and this is
the behavior shown in the respective plot (Figure 5(a)). This
example was discussed at the end of Section 4.1, where we
also explained why the multiple scattering model does not
exhibit these peaks. The exact CRB is almost the same as
the approximate CRB for a broad angular range (π/4 �
α � 3π/4). However, it is significantly lower than the
Born approximation value elsewhere, particularly near the
forward scattering and backscattering angles (angles close
to α = 0 and π, resp.), where the Born approximation
bound peaks occur. For d = λ/2, the Born approximation
model requires in view of (39) and (40) that CRB(d1) = ∞
when α = π/3, 2π/3, and this is the behavior illustrated
in Figure 5(b). Here the situation is different (than in
Figure 5(a)) in that although the multiple scattering model
does not have peaks at α = π/3, 2π/3, it does have peaks
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Figure 5: Backscattering CRB(d1) for τ1 = 1 = τ2 versus the
incidence angle α (where β = π − α). Plots are provided for (a)
d = λ/4 and (b) d = λ/2.

at approximately α = 0.3143π, 0.6857π which closely
match those of the Born model bound. Clearly the CRB
behavior of both models is roughly equivalent. This recalls
the point made in Section 4.2 that the nonlocalizable sets for
the exact and approximate models are of equal size, which
suggests (alongside this and other numerical examples to be
shown next) that, overall, across the entire parameter space,
the localizability predictions of the two models are rather
comparable, a general conclusion of this study that is further
highlighted next with more examples.

Figure 6 illustrates, for backscattering experiments and
τ1 = 1 = τ2, the (d,α)-dependence of CRB(d1) for d ∈
[0.1λ, 10λ] and α ∈ [0,π]. The dark areas of the contour
plot highlight regions where the bound peaks. The number
of blind spots is seen to go up for higher values of d,
in agreement with the discussion in (39) and (40). The
exact results are essentially a smoothed-out version of the
approximate results, with the general behavior of the two
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Figure 6: Contour plots of CRB(d1) normalized by σ2 correspond-
ing to backscattering data for τ1 = 1 = τ2 versus the incidence angle
α and scatterers’ separation d.

models being very similar for separation d � λ. On the
other hand, for separation d � λ/2 the exact model does
not exhibit the same blind spots as the Born approximation.
Note that these results agree with the plots shown in Figure 5.
Grid lines highlight the cross-sections of d = λ/4 and d = λ/2
corresponding to the results in Figure 5. For d = λ/2, the grid
line crosses 3 blinds at α = π/3, π/2, and 2π/3 for the Born
approximation and α = 0.3143π,π/2, and 0.6857π for the
exact model, also highlighted with grid lines. Near d = λ/4,
the blinds asymptotically approach the horizontal d = λ/4
boundary for the Born approximation but fade out before
reaching it in the exact model, while the blind at α = π/2 is
present in both cases since then g = 0. Figure 7 illustrates
further the relation between the Fisher information for
the multiple scattering and Born approximation models.
The regions, where I(d1) ≤ IBorn(d1) are shown in gray
and black lines, show the blind conditions for the Born
approximation model. Although not indicated explicitly in
this figure, I(d) = IBorn(d) along the line α = π/2 where
both have zero Fisher information. This locus is the only
one which bisects any of the regions where I(d) ≤ IBorn(d)
in the figure. All others are only approached by these
regions from one side. The checkered pattern for d � λ/5
indicates that the multiple scattering between the two targets
alternates between aiding and impeding estimation of the
target location as α and d vary. The alternating pattern of
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Figure 7: Map of the regions where multiple scattering effects do
not aid estimation of target location in relation to blind conditions
of the Born approximation model. Black lines mark conditions
where IBorn(d1) = 0. Gray areas mark regions where I(d1) ≤
IBorn(d1). The same parameters are used here as in Figure 6 (τ1 =
τ2 = 1, and β = π − α).

helpful and pernicious multiple scattering effects in the exact
model draws the ridges of high CRB in alternating directions
adding a wavering quality to their shape. This can be seen
in Figure 6(a). The same effect also breaks up the blind
regions, so the multiple scattering does not produce the same
continuous loci of infinite CRB(d1) conditions as the Born
approximation model. However, the bound remains very
high in these areas so there may be little practical difference.
For d � λ/5, the curved blind condition loci produced by
the nulls of the SNRBorn term in IBorn(d1) are no longer
present and only the blind from the g(α,β) term at α = π/2
remains. Here the checkered pattern ends, and IBorn(d1) is
consistently larger than I(d1) with the exception of the locus
at α = π/2. This is consistent with the multiple observation
example illustrated in a later section by Figure 8(a) where
the error bounds of the multiple scattering and Born
approximation models averaged over all observation and
incidence angles converge above d ≈ λ/2 but for d � λ/5
the CRB of the multiple scattering model is consistently
higher. We conclude from these results that, in the particular
backscattering setting, which is key for monostatic radar
and sonar, the permissible target localization performance as
measured by the fundamental CRB is in general comparable
for the exact and approximate models, but that there are
also clear differences between the two models as well as a
number of well-defined regions (highlighted in the figures
and discussion above), where multiple scattering clearly
facilitates or obscures localizability.

5.2. Multiple Observations. So far we have emphasized the
Fisher information and CRB predictions for estimating the
target position with particular emphasis on single observa-
tions or SISO data. Our emphasis on this single observation
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Figure 8: Average CRB(d1) as a function of the scatterers’
separation d. The Fisher information on which the bound is based
is averaged over 104 data corresponding to 100 uniformly-spaced
incidence and scattering angles in the full interval [0,π]. Two
variations are shown: (a) equal (τ1 = 1 = τ2) and (b) unequal
(τ1 = 1 and τ2 = 1/4) scatterer strengths.

context has facilitated the extraction of analytically backed
insight about the information content in the data under
both the exact and the Born approximation models. A more
general case is that in which multiple samples are available
for each sensing configuration. The additional samples
can increase SNR and therefore localizability. But in this
case, the same general insight obtained above still applies.
A completely different situation is that of multiple-input
multiple-output (MIMO) data corresponding to different
sensing configurations. We conclude by considering this case
which is less transparent for analytical study. The MIMO
calculations provide values of the CRB averaged over the
sensing configuration parameters which effectively reduces
the parameter dimensionality and allows us to decipher
general patterns that are not obvious from the SISO analysis
and associated computer results.
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Figure 8 shows plots of CRB(d1) normalized by σ2 versus
d for scattering data corresponding to MIMO experiments
using 100 incidence angles αm,m = 1, 2, . . . , 100 that are
evenly spaced in the interval [0,π], and identical scattering
angles βn = αn,n = 1, 2, . . . , 100. The data are the 104

entries of the resulting scattering matrix. Results are given
for the two cases of (a) equally strength scatterers having
τ1 = 1 = τ2; (b) τ1 = 1 and τ2 = 1/4. The results for
the two cases reveal the same general trend. In particular,
we note that for d � λ/2 the predictions of the exact and
approximate models are quite similar while, for d � λ/2 the
two models are very different, with the Born approximation
CRB varying slowly and leveling off toward a plateau as d
becomes smaller, while the exact CRB increases drastically
as d becomes smaller. The value of CRB(d1) shown is the
average value of CRB per sample, as obtained by computing
the average Fisher information and inverting it. From other
experiments, we noted that good averages could be obtained
with only Nt � 10. The observed behavior is that the exact
CRB is large for small target separation d (below 0.1λ), but
levels off and fluctuates slowly for d > 0.1λ. We found
that for small d the average CRB(d1) is dominated by the
term 1/|F(d, τ1, τ2)|2, which is, according to (36) and (37),
proportional to CRB(d1) (see the plot of this term given
in Figure 2). The term F → 0 as d → 0 so that from
(37) the SNR goes to zero as d → 0, and in turn from
(36) also the localization information goes to zero as d →
0. In other words, for small target separation the effect of
multiple scattering is destructive in that it diminishes the
SNR and consequently via (36) also the target localization
information. This contrasts with the Born approximation
calculation, where the information (and the respective CRB)
tends in general to a finite value as d → 0 as shown in
the plots. In conclusion, these results suggest that, when
averaged over all the sensing configurations, the exact CRB
results are well-approximated by the Born approximation
results for approximately d � λ/2. For approximately λ/10 �
d � λ/2, the two models differ visibly, and for d � λ/10
the real CRB is significantly larger than the approximate
CRB, indicating that for such small separations the ability to
estimate the position d1 of the two-target system is highly
reduced relative to what one would have expected from
the Born approximation calculation. Physically, the reason
is that then the multiple scattering produces destructive
interference, reducing significantly the SNR of the received
signal which is according to (36) the key quantity governing
the target localizability.

6. Conclusion

This paper has explored the information about target
position that is contained in scattering data by means of
the fundamental statistical signal processing framework of
the Fisher information and associated CRB pertinent to
the unbiased estimation of scattering parameters. We have
focused on the basic two-point scatterer system which is
the simplest target exhibiting multiple scattering, with par-
ticular attention to the quantification of the target position

information. To further facilitate formal tractability, we have
emphasized the Fisher information and CRB calculations for
all known scattering parameters (known two-point target
case) except the target position. This approach has rendered
closed-form expressions for the information and CRB for
target position estimation, which has in turn offered a lot
of mathematical and intuitive insight on the partly separate
and partly combined roles of the sensing configuration and
the target parameters and the companion internal multiple
scattering. These developments have been elaborated further
with the help of numerical illustrations.

The results have been derived in the exact multiple
scattering framework as well as in the Born approximation
model applicable only to weak scatterers exhibiting neg-
ligible multiple scattering. The multiple scattering results
apply in general, and the Born approximation results are
also important on their own since they apply to weak
scatterers exhibiting negligible coupling between them. The
commonalities and differences of the two models have been
contrasted, and many concrete examples have been given of
conditions under which multiple scattering has beneficial or
detrimental effects in target localization relative to the single
scattering framework. We have studied in detail the respec-
tive nonlocalizability conditions for both the exact multiple
scattering model and the Born approximation model, con-
cluding that while their NLOS blind spots generally differ,
the sets of combined configuration and scattering parameters
yielding nonlocalizability associated to these two models are
actually equivalent. Thus in the entire configuration and
scattering parameter space, the two models are comparable
with regards to localizability. In addition, we have also
discussed concrete necessary and sufficient conditions for
the analog values of position information to be greater
(or smaller) under multiple scattering versus the Born
approximation. The results in this direction are important
since they allow the quantification and understanding of the
role of multiple scattering in localization without the need
for explicitly evaluating the Fisher information and CRB.
We have provided a detailed discussion of the blind spot
conditions under which the target localization information
is zero, for both scattering models, and specific examples
of blind spots have been incorporated in the numerical
illustrations section. The provided numerical results suggest
that under broad-angle MIMO data, in which the effect of
the particular sensing configuration is somehow averaged,
the Born approximation model approximates well the exact
multiple scattering results for values of d � λ/2, but that for
d � λ/2 the difference between the two is very marked. The
MIMO results show that for small d the effect of multiple
scattering is consistently detrimental to localizability, thus
for large scattering data sets and small separations d, the
effect of multiple scattering appears to be destructive relative
to the Born approximation whose associated predictions
are therefore optimistic. The difference between the Born
approximation and exact scattering models becomes visible
also for specific single angle pairs or SISO configurations,
where the role of the configuration can be decisively in
favor (as enhancer of the target information) of one of
the two models. On the other hand, as highlighted in
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the paper both theoretically and numerically, within the
SISO framework the predictions of the two models regarding
target localizability are in general comparable.

We plan to apply the techniques developed in this paper
to other related problems such as estimation of the targets’
separation which is related to the imaging resolution and
quantification of the role of artificial or helper scatterers in
target estimation and imaging. Finally, we wish to point out
that clearly the results and conclusions derived in this study
apply only insofar as the stated model assumptions are met.
For instance, for simplicity we assumed an additive white
noise model. Yet, multiplicative and correlated noise models
are also relevant in practice. More importantly, the present
developments hold only for monochromatic waves. Thus the
questions addressed in the paper on the information content
of scattering data with particular emphasis on the role of
multiple scattering remain open for more general noise
models and signals, for instance, broadband fields. These
theoretical and practical issues provide interesting routes for
future research.
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