

Aspect Oriented Programming Methodology to Support the Aspect Oriented Programming Methodology to Support the Aspect Oriented Programming Methodology to Support the Aspect Oriented Programming Methodology to Support the

Design of Specific Domain FrameworkDesign of Specific Domain FrameworkDesign of Specific Domain FrameworkDesign of Specific Domain Framework

Xavier Medianero1, Sérgio Crespo C.S. Pinto2 and Clifton Clunie3

 1,3 Technological University of Panama,

Panama City, Panama

2 Universidad do Vale Do Rio dos Sinos

 São Leopoldo, Brazil

Abstract
The aspect-oriented programming has valuable advantages over

other programming paradigms, but in turn it presents difficulties

when applying the concepts within the stages of analysis and

development to reduce the drawbacks of this paradigm. This

paper proposes a methodology to reduce the drawbacks of the

paradigm, at the same time provides steps that involve elements

of common analysis in the Requirements Engineering with

Aspects (basic unit of paradigm) in order to create the

framework for a specific domain. The proposed methodology

brings together some benefits methodologies, but it emphasizes

the treatment of the first disadvantages of the programming

aspects and the location and identification of aspects and

elements; in addition, this article provides a tool that supports

some methodology steps by generating part of the framework

code base. In the process of treatment issues, the analysis is

oriented to the specification of aspects using AspectJ, with rules

to locate and determine aspects within its four cyclical stages.

Finally, it includes a case study which evaluates the steps in this

methodology

Keywords: Aspect Oriented Programming, Methodology,

Software Engineering, Requirements Engineering.

1. Introduction

The Aspect Oriented Programming (AOP) is a paradigm

that provides a high level of benefits in the process of

development and maintenance of Software Engineering. It

promotes and encourages the separation of business

concepts in cross-sectional characteristics providing

advantages over other modern paradigms [1].

The purpose of the AOP is the separation of functionality

with cross sections in blocks called "Aspects" [2]. Aspects

are units of abstraction and composition which collect

instructions that are difficult to encapsulate because of its

presence in different functions [3]. Aspects are not

identifiable and independent units such as classes, as a

matter of fact; they are abstract elements that generally

provide added features and functionality to other elements

due to their spread by the same logic.

The aspects encapsulate the crosscutting features, as well

as classes and methods that only have information relevant

to its functionality, making these tasks more efficient and

easier; likewise, they capture external features and

procedures independent of the method allowing an easier

and more complete analysis. Tangled and dispersed code

will be reduced because unnecessary code will not be

present at all functions, but only in aspects.

The AOP paradigm also has some inconveniences that

hinder its use; these disadvantages are minor glitches due

to transversal crosscutting nature and behavior in the base

language. Among the disadvantages [4] we have:

• Conflict between aspects.

• Conflict between the base language and aspects

• Complexity in Aspect-Oriented Analysis.

The methodology emerges as a solution to some

problems related to last point, this is split up in structural

conflicts [5, 6], behavioral [5, 7] and dynamic

characteristics [8], which will be treated in this paper.

Software engineering is not only for the end product design

software, but also for the generation of domain-specific

framework containing the essential elements for a macro

product. The framework are oriented application

generators to a specific domain [9], these allow the

creation of structured software based on features that are

present in the core and hot spots.

The proposed methodology is based on the way AspectJ [3]

handles and determines the components of the aspects,

while integrating characteristics of Aspect Oriented

Requirements Engineering (AORE) [10, 11], Aspect

Oriented based on Component Requirements Engineering

(AOCRE) [12], Structured Lexicon to Aspect

Identification (SLAI) [13] Methodologies and View Point

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 26

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Model [14]. This methodology creates structure of analysis

to minimize the AOP problems found at conceptual model

[5] and Join Point model [7] frameworks, via AspectJ.

This paper is divided into the following sections: related

works in Section II, AOP conflicts in section III, the

proposed methodology and support tool in Section IV and

V respectively. And finally an evaluation of both in a case

study in Section VI.

2. Related Works

There is a need for a systematic methodology for the

analysis of the aspects in the early phases of engineering

process [13] due to emerging technologies, the time of

appearance of the aspects and their integration into

Software Engineering. In addition, existing methodologies

focus on attacking a particular problem but not in a

generalized way.

2.1. AORE Methodology

The AORE methodology is based on the classification of

cross functional concerns in aspects from the functional

requirements (RF) and nonfunctional ones (RNF) provided

by users [10]. Most models are developed for AORE

approach based on Theme / Doc [15].

The AORE methodology uses a procedure based on the

treatment of issues as a coherent set of requirements,

wherein the cross-cutting aspects are obtained from

recurrence matrices created by the influences of the issues,

indicating how many and which elements work in a

positive or negative way on others [16]. Said methodology

uses the rule of decomposition and it allows you to draw a

projection of dependencies.

2.2. AOCRE Methodology

The AOCRE methodology separates the functional and

nonfunctional requirements of a system by relating the

keys (aspects) with the supplied components or the missing

system [12].

This methodology is based on the specialization process

(decomposition of aspects) in smaller aspects, maintaining

the integrity of the components. One aspect that controls

the issue of user interface can be decomposed into views,

quality over user actions, feedback mechanism, scalability

and extensibility [12].

2.3. SLAI

The SLAI Methodology (Structured Lexicon for

Identifying Aspects) is based on the identification of

potential aspects in the design phase; these aspects are

identified and specified in conjunction with the treatment

of functional and non functional requirements of software

[13]. SLAI works with segmentation and replication of use

cases by using lexical identification.

2.4. View Point Model

The Point of View Model is the integration of approach to

views and aspects, getting a more solid structure for the

management of requirements [14]. The views are created

from the possible scenarios and system features, solving

conflicts that present themselves in the detailed

requirements.

2.5 Others Models

Some models can minimize the disadvantages of the AOP.

The Theme/Docs Model uses orientation to topics; this

separates system requirements according to the themes that

represent issues of concern. This model is based on lexical

analysis procedures for the separation in matters under the

concept of the AOP [11]. The Use Case model to non-

functional requirements using use cases that represent the

smallest unit of the system, while non-functional

requirements which are seen as infrastructure use cases that

analyze the behavior and identify the crossing points of

base use case [17] and the viewpoints model based on the

separation of interest using a multi-view approach by rules

of decomposition, definition and conflict management [17].

3. Aspects Oriented Programming

Complications

3.1. Structural Conflicts:

This inconvenience is the difficulty of knowing the

objectives, components and characteristics of aspects after

prolonged maintenance periods [5, 6]. This conflict should

not be confused with one of the advantages of the AOP,

which facilitates the maintenance by eliminating the

scattered code. These two features are different because

the structural conflict lies in the semantics loss of

information about functionality while maintaining orderly

and understandable code, which is the advantage of the

AOP on OOP, because in the end, the code loses order and

becomes dispersed and tangled, making it difficult to

understand.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 27

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.2. Behavior Conflicts

The difficulty lies in the natural complexity of the aspects

concerning the correct and logical location of its elements

in the system [5, 7], since due to its characteristic of

transversality, it is easy to fall into the error of location,

causing ambiguities at the time of execution, therefore

causing the aspect to perform incorrectly, which will

eventually lead to conflict within the framework.

3.3. Multifunctional Conflicts

This problem comes about because of the nature of the

AOP. As the AOP intends encapsulation concerns (features)

in aspects, this task is blurred if this issue is

multifunctional [3, 8], i.e. if a case presents several targets

and is used in completely different processes, the task of

encapsulation is made more difficult due to the lack of

rules for deciding in which aspect this functionality is

located. In addition, this conflict refers to the problem in

reference [4] which is about grouping of aspects in cross

cutting section.

3.4. Dynamic Facilities:

One advantage of the AOP is to dispense, activate or

modify aspects at runtime [8], in order to change features

without having to shut down, which is very beneficial, but

the task of deciding what will be considered as dynamic

aspects and measuring the impact of same is a complex

task.

4. Methodology: MEDFOAR

The proposed methodology will be called "MEDFOAR"

(Aspect Oriented Methodology to Design Frameworks in

Requirements) and it proposes four stages for the

identification and treatment of aspects. This process is

cyclical to avoid redundancy while aspects are identified

and specified (however, in some cases the results can be

obtained in a single iteration). These four phases are:

4.1. Detail of Requirements

The first stage consists of identifying the elements that has

the framework; these elements include actors or entities

involved in some way with the software.

4.1.1 Approach to Views

At this stage approach is used to view orientation by

objectives, depending on the functional requirements and

stakeholders of the system, the views are defined based on

the scenarios of the framework.

The elements of the schemes aimed at determining views at

this stage are as follows: Name of the view (it is an

identifier naming schema), Stakeholder (the entities that

interact with the system within the selected view, semi-

automatic processes) Associated functions (functions that

appear in the view), and influences.

4.1.2 Use Case Development

The use case diagram of the system involves actors in

conjunction with a flow of activities performed to achieve

a given process.

4.1.3 Accounting of determining identifiers of

functionalities

Process: Identifiers (significant nouns and verbs in the

name of the use cases) are stored in a repository, so it is

possible to determine the frequency of each within the

procedure. Also included is an influence of IDs on the

cardinality of the features and views, so it can be

associated with few cross-cutting which are also possible

to make a case

The SLAI methodology specifies use cases for cross-

relating each one with its influences, obtaining identifiers

of phrases, verbs and phrases needed to be segmented by

replicating the different use cases through the diagrams the

identification of aspects [13]; MEDFOAR uses identifiers

in order to account for the presence of functionality

throughout the system.

4.1.4 Identification of multifunctional modules

Through the needs and software requirements, it is

possible to determine the modules to be multifunctional, in

other words, the ones that are used in several procedures.

For this task, the methodology uses the use case diagrams,

scenarios and views. A module is said to be

multifunctional when it is present in a use case and it is

employing a function which is already absorbed in another.

This methodology step is a response to the difficulty in

treating of abstracting functional modules within a

particular concern. At this stage, identify functional

modules and low abstraction segment meet.

The elements obtained after the application of this stage

are used case diagrams, charts, views, actors, lexical

identifiers database and multi-prone modules.

4.2. Aspects Identification

At this stage, candidate aspects are determinate by using

the last elements of the previous stage together with the

application of these rules.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 28

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.2.1 Identification of influences and dependencies

It uses the use case modeling because these diagrams are

expressed in the functions to be performed before and after

the addition to the requirements and rules for certain

processes. The relationship observed in use case diagrams

and their meaning can be observed in Table 1.

Table 1 Dependencies through the use case

Link Induces

A � B Basic influence of A on B

A extends B Probable influence of A on B

A includes B Forced influence of B on A

A,B specialize C A, B apply same as C

Justification: using the use case diagrams, MEDFOAR

induces influences, dependencies and cross cutting of some

features, so that there is an analytic view of the

interrelationships of the different software modules.

4.2.2 Application of the Rule of Decomposition of

Functionalities

This phase is based on AORE; nevertheless it differs

because AORE treats the elements of relationships as

crosscutting issues and analyzes their influences by

identifying the type of aspects, while MEDFOAR applies

the rule for functions instead of issues, and it analyzes their

influences and dependencies by focusing on location and

identification of aspects and their elements.

The rule of decomposition is a process that identifies

potential candidate aspects through a system of influences

and dependencies of functionalities [10]. This rule assigns

a value to each feature, which depends on the number of

influences and dependencies present. When one has a large

number of influences or dependencies, should designate an

aspect that cuts this function and the associated class.

Furthermore, if a functionality associated with an aspect

has an <include> dependency that only affects this

function, it is determined that the influential function will

also have an associated aspect.

4.2.3 Aspects through non-functional requirements

Using a list of the most common non-functional

requirements determine the most applicable to the system

depending on their adaptability ones. This procedure

includes the identification of NFR (Non-functional

requirements) tenders obtained from the users of the

system.

Recalling that some NFR are scattered in different areas of

the framework, the methodology proposes to take into

consideration the requirements like: availability of service,

security, system performance, response time, reliability of

processes, performance, multi-user capability, legal cases

and adaptability to the network.

Justification: non-functional requirements should be

viewed as elements of analysis within the project because

their presence can change the focus of the system.

4.2.4 Selecting Candidate Aspects

Candidate aspects will be obtained by the union /

interception of the following sets. A set consists of the

elements most frequently achieved in the selection process

IDs Determinants. The other set consists of those obtained

by the decomposition rule.

4.2.5 Selection of Classic and Dynamic Aspects

The candidates are selected aspects of the binding of cross-

functional set. Then, there are measures to determine when

an aspect can be considered dynamic or not; consequently

that does not involve the stability or its performance.

a. If the aspect candidate has any influence of small

branching.

In determining the functionality within the use case

diagrams, is possible to find an aspect whose intercepted

functionality has few influences; any aspects satisfying this

condition can be treated as dynamic.

b. If the aspect candidate has any influence of long

branching

If the branches are long, it is necessary to evaluate the

possibility that if cutting or modifying any functionality at

runtime in turn adversely affects some important

functionality or if the design is very difficult to evaluate, if

so then the aspects intercepting these functions cannot be

considered dynamic. However, this decision is under

review and impact as designed.

4.2.6 Integration Candidate Aspects:

In this section, candidate aspects are unified depending on

their group within the group of lexical determiners.

Identified aspects that are under the same set of identifiers

are joined, forming a new aspect that intersects the union

of all classes and functions that intercepted the previous

ones.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 29

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.2.7 Application of Metadata

Identifiers are established semantic aspects, classes and

framework components through a layer of metadata. The

information stored is as follows: Item Name (ID), element

type (aspects, class, method, etc.), functions to which it is

associated and its relevance within the flow and

functionality description element.

As a result at this stage, we have: decomposition matrix,

candidate aspects, dynamic aspects and metadata.

4.3. Candidate Aspects Specification

At this stage, we analyze the components of the aspects by

specifying and locating them within the framework of

analysis while controlling redundancy.

4.3.1. Aspect’s Range Control

At this stage we determine the range to every aspect

candidate by specifying dependencies and influences of the

aspect. Unlike the procedure of the decomposition rule, it

specifies when they run and whether there are any

conditions for execution by determining access points as

cross-cutting functions and the actions that are executed

before and after. This point refers to the cut points and

advice.

Justification: this step attacks difficulty that exists when

setting matters in determining cross-section, after the

whole process of global analysis on the aspect, each one is

associated with macro functionality.

4.3.2. Treatments of Elements of Aspects

At this stage, the methodology identifies and analyzes the

cut points (CP), join points (JP) and advices (AP). The

instructions (IS) will not be evaluated with rules at any

stage because the operations are not predictable as other

features, but you can refer to classes or objects. The

analysis of each element is done through the following

rules:

Cross-cuttings which are displayed on the direct

relationship between the issues and use cases that intersect,

i.e. depending on the functionality of the use case, they are

conceptualized within a transversal feature, it represents

the transversal functionality in each one of the use cases

associated with the element that generates it.

Cut-Points are elements which allow access to the aspect

at a certain code stage. As it directly affects classes,

objects and methods, the location may be submitted within

the calls or execution of methods, constructors, initializing

objects, assigning an attribute and many other

circumstances. The methodology establishes points of

location to the use cases that encapsulate each of these

elements, referring to the name of the objects involved.

Join-Points which are elements associated with a

particular crosscutting. Join-Points represent the grouping

of cut points, which is related to the class of AspectJ, their

existence lies in the possibility of grouping many links to a

cut; therefore its benefit is present in multiple accesses to a

function. In this methodology, the JP will be located within

the Use Case diagram, only if global access is required for

all the cross sections.

Advices are elements which should be placed in the use

case to which the aspect intercepts. The advice will be

placed next to parent aspects so as to be recognized

according dependences and influences of the functionality

that cuts the associated CP. This representation includes

time: after (), before () and around ().

The symbols used were obtained from the work of Losavio

et al [18].

4.3.3. Redundancy Control

Due to the process specification of aspects, these can be

found with very similar functions and elements, resulting

in redundancy of definitions, which must be analyzed.

Aspects with more than 85% similarity must be unified in

one aspect; the comparison criterion is based on the

classes, methods that intercepts, and the similarity of its

elements (cuts and advice). The candidate aspects can be

converted into one or maintained separately.

4.3.4. Component Integration

As applied in AOCRE and the process of the analyzing of

Software Engineering, aspects and associated classes are

integrated into components. This task should define if they

are associated under the same cross-section and if the

elements have a strong relationship when running the

routines of framework.

4.3.5. Metadata of Sub Elements

This process applies metadata to integrate the elements of

the aspects which are CP, JP, advice, instruction and cross-

cutting.

Justification: this step reduces the lack of semantic

knowledge of each aspect element when the system tends

to be very large or after many changed processes,

undermining the structural conflict.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 30

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The results of this phase are the following elements:

specification of the aspects, metadata aspects' elements,

location of the elements of the aspects, aspects

specialization (reducing duplication) and detailed aspects.

4.4 Aspects in Conflicts

4.4.1 Cataloging Aspects

This stage is similar to AORE in execution, but it differs in

the objective; AORE classifies concern in aspects,

decisions and functions, as its analysis elements are

concerns, proposal from methodology classify candidate

aspects separately of the functions and decisions; this

process applies only to a certain group of issues.

This step is only applied when the aspects identified have

weak persistence, i.e. they may not be real aspects. It is

applied if the aspects identified lack cut-points, join-points

and / or advice, which is caused when an aspect is only

obtained through the method of Lexical Identifiers.

4.4.2 Weighing Aspects

At this stage, the aspects are weighted depending on

several factors. This process is conducted 1 to 1. The

selection of the actors in the conflict is displayed according

to the scheme of the system and the point of view of

stakeholders.

The evaluation in Table 2 gives the range of 0 to 7 for the

Stakeholders and Users (if applicable), where 7 is the

highest possible value for each item intercepted. For every

influence that gets an intercepted function, there is 1 of

importance and there are 3 for each class intercepted. This

evaluation is given by the relevance of each element within

the design. The aspect with more value will be called the

impact between the two selected.
Table 2 Weighing Aspects by interceptions

Element to evaluate Value Justification

User / Stakeholders 0 – 7 The Influence evaluated by

users and stakeholders

about an aspect. This value

applies to each element

that intercepts: Aspects,

Class or Functions.

Intercepted Feature 1x The functions influenced

by the methods the aspects

intercepted.

Intercepted Classes 3x

1x

Intercepts Classes

By each Aspect’s element

that intercept a class.

5. Support Tool

There is a support tool for this methodology. It is made in

Java by using the Eclipse platform in conjunction with

AspectJ.

The tool works in three (3) phases:

Phase 1: Following the stage 2.1 Identification of

influence and dependency, the information is stored from

the form of the tool that contains all the functionality of the

system.

Phase 2: The relations between elements are added in the

model of the tool, so that takes influences and

dependencies. Once this task is performed, the tool by

provides candidate aspects cutting associated classes and

functionality according to the rules of the methodology

(cut-points, join-points and advice are created in this

process). The tool checks the total number of influences

and dependencies; using this number determines the

functions that are crosscutting, and creating an aspect with

the same name; then it creates its elements linked to the

features to corresponding according the structure of

AspectJ.

Phase 3: In addition, the tool generates a graph that

displays the list of aspects, classes and features, conducts

resolution of conflicts, controls redundancy and generates

the case of the system logically added.

Image 1 show relationship between Methodology’s Phases,

Support Tool’s functions and Final Products, Image 2

shows a screen with the options in this phase.

6. Case Study

The methodology was applied in a case study based on an

ATM machine (Terminal Service for Banks) [14] which

needs a software to manage the hardware and user support,

likewise it communicates with the bank's database.

A software is required for an ATM machine that allows the

performance of the following operations: (1) Accepts the

client requests, (2) Allow cash withdrawals, (3) Provide

account information, (4) Allow balance transfer (5)

Provide recognition of bank users and foreign users, (6)

Provide availability by 24 hours a day.

Additional extras operations were created for the full

implementation of this methodology: (7) Allow the

purchase of Phone Cards and Transportation Tickets, (8)

Allow the payment of utilities, for example, water bills,

telephone, (9) Allow the user to print transaction proofs,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 31

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

billing statements, and other functions (10) Provide

support for display of bank movements of account, (11)

Allow retrieving information from user accounts and

passwords, (12) Update bank booking.

The operations 9, 10, 12 apply only to bank customer.

Image 3 show the use case diagram related to the ATM

machine. It is one of the first tasks (Stage 1.2).

Image 1 Relationship between methodology, support tool and products

Image 2 View of Support Tool (1 Elements, 2 Methodology steps 3. Relationship and redundancy controls)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 32

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Subsequently, there an explanation of the relevant stages of

the process:

Stage 1.3: Accounting of determining identifiers of

functionalities. The repository of feature lexical identifiers

is created by using use case diagram. That is shown in

Table 3.

Stage 2.1: Identification of Influences and

Dependencies. The array of influences and dependencies

of this system is presented in Table 4.

Stage 2.2: Application of the Rule of Decomposition of

Functionalities. The features with larger number of

influences and dependencies are: Identify All Customer (6

influences), Bank Customer Data Display (3 influences),

Proof Prints (4 units), Detailed Prints (2 units, few

dependencies), and End/Restart (3 dependencies). They

became candidate aspects.

Applying the included clause (direct relation by <include>)

Perform Customer Search became candidate aspect too.

Stage 2.4 Selecting Candidate Aspects

Combining the two processes of identification, we have to

the aspect crossing "Details Impression" with low

dependency but it becomes part of the group of aspects for

its high number of repetitions in the lexicon identifier

repository.

Hence, candidate aspects in this system are as follow: (1)

Aspect cutting Identify All Customers function, (2) Aspect

to Perform Customer Search, (3) Aspect cutting Bank

Customer Data Display, (4) Aspect cutting Detailed Prints,

(5) Aspect to Proof Print, (6) Aspect cutting End / Restart

function.

Table 3 Lexicon Identifiers Repository

Lexical Identifiers Retrieved from Freq

Search Perform Customer Search 01

Identify Identify All Customers 01

Withdrawal Withdrawal 01

Transfers Bank Transfer 01

Purchase Card Purchase 01

 Service Payment 01

Print (Impression) Proof Print

Detailed Prints

Card Print

03

Recover Information Recovery 01

Display Account Data Display

Bank Customer Data Display

Transactions History Display

03

Stage 2.6 Integration Candidate Aspects

Two of the candidate aspects are associated under the

name "Print" According to Table 3. Therefore, applying

the methodology joins those on a single aspect intercepting

all functions individually crossed. This union will be called

“Aspect Printing Details Plus”

Image 3 Used case diagram.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 33

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Stage 3.2 Treatments of Elements of Aspects

Elements were located within the designed methodology;

their representation within the use case diagram is shown

in Image 4. These obtain the following result:

Aspect to Identify All Customers

Cross-Cutting: ATM System – User Identification.

1Cut-Point: it is located by intercepting the Identify All

Customer function.

Join-Point: it is the point of union of all elements that

refers to the intercepted class. It is linked to the cut-point.

Advice: that is linked to the cut-point, due to the presence

of large number of influences, its intervention is after ().

Table 4 Matrix of Influences and Dependencies

Aspect to Perform Customer Search

Cross-Cutting: ATM System - User Identification.

1Cut-Point: it is located by intercepting the Perform

Customer Search function.

1Join-Point: it is the point of union of all elements that

refers to the intercepted class. It is linked to the cut-point.

Advice: it is linked to the cut-point and its intervention

time is around () because this aspect was identified by

included clause.

Aspect to Bank Customer Data Display

Cross-Cutting: ATM System - Complete Actions.

1Cut-Point: it is located by intercepting to Bank Customer

Data Display function.

1Join-Point: same as above JP.

Advice: it is linked to the cut-point, due to the large

number of influences its time is after ().

Aspect Printing Details Plus

Cross-Cutting: ATM System – Global Actions.

2Cut-Points: one of them is located by intercepting the

Proof Print function and one by intercepting the Detailed

Print function.

2Join-Point: they are intercepting both classes related to

the above function.

2Advices: There are two definite advices; the first one is

related to the first cut point and its execution is before ()

due the number of dependencies. The second advice as it

relates to the second cut point and its execution time is

before ().

Aspect to Restart

Cross-Cutting: ATM System – Global Actions.

1Cut-Point: it is located by intercepting Restart/Stop

function.

1Join-Point: same as in the previous case with single

Image 4 Used case diagram with aspects.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 34

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

cutting function.

1Advice: it is linked to the cut-point, due to the large

number of influences that time is after ().

The case study concluded with the generation of the

framework case, the basic structure of the classes, methods

and aspects from the support tools such as an Eclipse

Aspect Project with AspectJ.

7. Conclusions and Future Works

Incorporating the AOP paradigm in the design stages of

the Engineering Requirements allows you to add a more

solid structure to the model because you can have all its

benefits from the early stages.

The aspects in MEDFOAR are extracted from the used

cases, the functional and non- functional requirements plus

the system objectives. This methodology uses rules based

on influences and dependencies of functions to perform all

the tasks of identification and determination of issues.

The methodology in concurrence with the support tool

provides the following advantages: The treatment of

aspects is performed during the routine tasks of object-

oriented paradigm; this method allows the identification,

specification and locations of areas that impact the system.

The structured approach attacks the problems and

maximizes the benefits in the early stages of the software

development. The tool allows searching and comparison of

elements by minimizing redundancies, while it permits the

generation of the basic framework of the analyzed system.

Future works will extend on the phases of the methodology

to other stages of the engineering software; insofar as the

support tool is concerned, they will allow the integration of

classes already defined in code form, and they will test the

methodology in different settings and environments for its

refinement.

Acknowledgment

Work financed by the National Secretary of Science,

Technology and Innovation (SENACYT) of the Republic

of Panama through the proposal APY-GC10-061B.

References

[1] Z. Hua, et al., "The Framework of Agent-Oriented

Programming," Machine Learning and Cybernetics, 2005. Proceedings

of 2005 International Conference on, 2005.

[2] A. Solberg, et al., "Using Aspect Oriented Techniques to

Support Separation of Concerns in Model Driven Development," in 29th

Annual International Computer Software and Applications Conference,

2005.

[3] Fernando Asteasuain and B. Contreras, "Programación

Orientada a Aspectos. Análisis del Paradigma," Licenciatura, Ciencias y

Computación, Universidad Nacional del Sur, Argentina, 2002.

[4] G. Cugola, et al., "Language Support for Evolvable Software:

An Initial Assessment of Aspect-Oriented Programming," in

International Workshop on the Principles of Software Evolution,

IWPSE99, 1999.

[5] H. Hu, et al., "An AOP Framework and Its Implementation

Based on Conceptual Model," ISECS International Colloquium on

Computing, Communication, Control and Management, p. 4, 2009 2009.

[6] A. Nusayr, "AOP as Formal Framework for Runtime

Monitoring," in FSE-16 Doctoral Symposium, Atlanta, Georigia, USA,

2008.

[7] W. Cazzola, et al., "Semantic Join Point models: Motivations,

2otions and Requirements," presented at the In SPLAT 2006 (Software

Engineering Properties of Languages and Aspect Technologies), 2006.

[8] G. Jun-Wei, et al., "A MDA based Aspect-Oriented Model

Dynamic Weaving Framework," presented at the International

Conference on Computer Science and Software Engineering, Wuhan,

Hubei 2008.

[9] M. E. Markiewicz and C. J. P. d. Lucena, "El Desarrollo del

Framework Orientado al Objeto."

[10] M. Aoyama and A. Yoshino, "AORE (Aspect-Oriented

Requirements Engineering) Methodology for Automotive Software

Product Lines," presented at the Software Engineering Conference,

2008. APSEC '08. 15th Asia-Pacific, Beijing, 2008.

[11] A. Rashid, "Aspect-Oriented Requirements Engineering: An

Introduction," presented at the 16th IEEE International Requirements

Engineering, 2008. RE '08., Catalunya 2008.

[12] J. Grundy, "Aspect-oriented requirements engineering for

component-based software systems," in IEEE International Symposium

on Requirements Engineering, 1999., Limerick, 1999, pp. 84 - 91.

[13] C. C. Budwell and F. J. Mitropoulos, "The SLAI

Methodology: An Aspect-Oriented Requirement Identification Process,"

in 2008 International Conference on Computer Science and Software

Engineering, Wuhan, Hubei, 2008, pp. 296 - 301

[14] P. Yu-Ning and L. Qiang, "A Viewpoint-Oriented

Requirements Elicitation Integrated with Aspects," presented at the

World Congress on Computer Science and Information Engineering,

2009 WRI., Los Angeles, CA 2009.

[15] Z. Jingjun, et al., "Aspect-Oriented Requirements Modeling,"

presented at the 31st IEEE Software Engineering Workshop, 2007. SEW

2007., Columbia, MD 2007.

[16] M. Tabares, et al., "Aspect Oriented Software Engineering:

An Experience of Application in Help Desk Systems," Dyna

rev.fac.nac.minas, vol. 147, 2007.

[17] L. Londoño, et al. (2008) “Análisis de la Ingeniería de

Requisitos Orientada por Aspectos según la Industria del Software”.

Revista EIA. 43-52.

[18] F. Losavio, et al., "UML Extensions for Aspect Oriented

Software Development," Object Technology, vol. 8, 2009.

Authors:

Xavier Medianero-Pasco is a student of the Master of Science

in Information and Communication Technology at the

Technological University of Panama. He was awarded a

Bachelor’s degree in Engineering and Computer Science from

the Technological University of Panama. His research interests

include Aspect Oriented Programming, Grid Computing and

other topics.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 35

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Sergio Crespo S.C. Pinto is a professor at the Universidade do

Vale do Rio dos Sinos, Brazil. PhD awarded by the Pontificía

Universidade Católica do Rio de Janeiro. His research interests

include Frameworks, Design Patterns and Software Engineering

among others.

Clifton Clunie is a professor at the Technological University of

Panama, PhD awarded by the Universidade Federal do Rio de

Janeiro. His research interests include Software Engineering,

Frameworks and Quality Assurance.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 36

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

